Search Results

Now showing 1 - 2 of 2
  • Item
    Universal emulsion stabilization from the arrested adsorption of rough particles at liquid-liquid interfaces
    ([London] : Nature Publishing Group UK, 2017) Zanini, Michele; Marschelke, Claudia; Anachkov, Svetoslav E.; Marini, Emanuele; Synytska, Alla; Isa, Lucio
    Surface heterogeneities, including roughness, significantly affect the adsorption, motion and interactions of particles at fluid interfaces. However, a systematic experimental study, linking surface roughness to particle wettability at a microscopic level, is currently missing. Here we synthesize a library of all-silica microparticles with uniform surface chemistry, but tuneable surface roughness and study their spontaneous adsorption at oil-water interfaces. We demonstrate that surface roughness strongly pins the particles' contact lines and arrests their adsorption in long-lived metastable positions, and we directly measure the roughness-induced interface deformations around isolated particles. Pinning imparts tremendous contact angle hysteresis, which can practically invert the particle wettability for sufficient roughness, irrespective of their chemical nature. As a unique consequence, the same rough particles stabilize both water-in-oil and oil-in-water emulsions depending on the phase they are initially dispersed in. These results both shed light on fundamental phenomena concerning particle adsorption at fluid interfaces and indicate future design rules for particle-based emulsifiers.
  • Item
    Maximizing transfection efficiency of vertically aligned silicon nanowire arrays
    (Hoboken, NJ : Wiley, 2015) Elnathan, Roey; Delalat, Bahman; Brodoceanu, Daniel; Alhoud, Hashim; Harding, Frances J.; Buehler, Katrin; Nelson, Adrienne; Isa, Lucio; Kraus, Tobias; Voelcker, Nicolas H.
    Vertically aligned silicon nanowire (VA‐SiNW) arrays are emerging as a powerful new tool for gene delivery by means of mechanical transfection. In order to utilize this tool efficiently, uncertainties around the required design parameters need to be removed. Here, a combination of nanosphere lithography and templated metal‐assisted wet chemical etching is used to fabricate VA‐SiNW arrays with a range of diameters, heights, and densities. This fabrication strategy allows identification of critical parameters of surface topography and consequently the design of SiNW arrays that deliver plasmid with high transfection efficiency into a diverse range of human cells whilst maintaining high cell viability. These results illuminate the cell‐materials interactions that mediate VA‐SiNW transfection and have the potential to transform gene therapy and underpin future treatment modalities.