Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Quantifying uncertainties in soil carbon responses to changes in global mean temperature and precipitation

2014, Nishina, K., Ito, A., Beerling, D.J., Cadule, P., Ciais, P., Clark, D.B., Friend, A.D., Kahana, R., Kato, E., Keribin, R., Lucht, W., Lomas, M., Rademacher, T.T., Pavlick, R., Schaphoff, S., Vuichard, N., Warszawaski, L., Yokohata, T.

Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and may play a key role in biospheric feedbacks with elevated atmospheric carbon dioxide (CO2) in a warmer future world. We examined the simulation results of seven terrestrial biome models when forced with climate projections from four representative-concentration-pathways (RCPs)-based atmospheric concentration scenarios. The goal was to specify calculated uncertainty in global SOC stock projections from global and regional perspectives and give insight to the improvement of SOC-relevant processes in biome models. SOC stocks among the biome models varied from 1090 to 2650 Pg C even in historical periods (ca. 2000). In a higher forcing scenario (i.e., RCP8.5), inconsistent estimates of impact on the total SOC (2099–2000) were obtained from different biome model simulations, ranging from a net sink of 347 Pg C to a net source of 122 Pg C. In all models, the increasing atmospheric CO2 concentration in the RCP8.5 scenario considerably contributed to carbon accumulation in SOC. However, magnitudes varied from 93 to 264 Pg C by the end of the 21st century across biome models. Using the time-series data of total global SOC simulated by each biome model, we analyzed the sensitivity of the global SOC stock to global mean temperature and global precipitation anomalies (ΔT and ΔP respectively) in each biome model using a state-space model. This analysis suggests that ΔT explained global SOC stock changes in most models with a resolution of 1–2 °C, and the magnitude of global SOC decomposition from a 2 °C rise ranged from almost 0 to 3.53 Pg C yr−1 among the biome models. However, ΔP had a negligible impact on change in the global SOC changes. Spatial heterogeneity was evident and inconsistent among the biome models, especially in boreal to arctic regions. Our study reveals considerable climate uncertainty in SOC decomposition responses to climate and CO2 change among biome models. Further research is required to improve our ability to estimate biospheric feedbacks through both SOC-relevant and vegetation-relevant processes.

Loading...
Thumbnail Image
Item

Comparing projections of future changes in runoff from hydrological and biome models in ISI-MIP

2013, Davie, J.C.S., Falloon, P.D., Kahana, R., Dankers, R., Betts, R., Portmann, F.T., Wisser, D., Clark, D.B., Ito, A., Masaki, Y., Nishina, K., Fekete, B., Tessler, Z., Wada, Y., Liu, X., Tang, Q., Hagemann, S., Stacke, T., Pavlick, R., Schaphoff, S., Gosling, S.N., Franssen, W., Arnell, N.

Future changes in runoff can have important implications for water resources and flooding. In this study, runoff projections from ISI-MIP (Inter-sectoral Impact Model Intercomparison Project) simulations forced with HadGEM2-ES bias-corrected climate data under the Representative Concentration Pathway 8.5 have been analysed for differences between impact models. Projections of change from a baseline period (1981–2010) to the future (2070–2099) from 12 impacts models which contributed to the hydrological and biomes sectors of ISI-MIP were studied. The biome models differed from the hydrological models by the inclusion of CO2 impacts and most also included a dynamic vegetation distribution. The biome and hydrological models agreed on the sign of runoff change for most regions of the world. However, in West Africa, the hydrological models projected drying, and the biome models a moistening. The biome models tended to produce larger increases and smaller decreases in regionally averaged runoff than the hydrological models, although there is large inter-model spread. The timing of runoff change was similar, but there were differences in magnitude, particularly at peak runoff. The impact of vegetation distribution change was much smaller than the projected change over time, while elevated CO2 had an effect as large as the magnitude of change over time projected by some models in some regions. The effect of CO2 on runoff was not consistent across the models, with two models showing increases and two decreases. There was also more spread in projections from the runs with elevated CO2 than with constant CO2. The biome models which gave increased runoff from elevated CO2 were also those which differed most from the hydrological models. Spatially, regions with most difference between model types tended to be projected to have most effect from elevated CO2, and seasonal differences were also similar, so elevated CO2 can partly explain the differences between hydrological and biome model runoff change projections. Therefore, this shows that a range of impact models should be considered to give the full range of uncertainty in impacts studies.