Search Results

Now showing 1 - 4 of 4
  • Item
    A molecular clock for autoionization decay
    (Bristol : IOP Publ., 2017-06-14) Medišauskas, Lukas; Bello, Roger Y.; Palacios, Alicia; González-Castrillo, Alberto; Morales, Felipe; Plimak, Lev; Smirnova, Olga; Martín, Fernando; Ivanov, Misha Yu
    The ultrafast decay of highly excited electronic states is resolved with a molecular clock technique, using the vibrational motion associated to the ionic bound states as a time-reference. We demonstrate the validity of the method in the context of autoionization of the hydrogen molecule, where nearly exact full dimensional ab-initio calculations are available. The vibrationally resolved photoionization spectrum provides a time–energy mapping of the autoionization process into the bound states that is used to fully reconstruct the decay in time. A resolution of a fraction of the vibrational period is achieved. Since no assumptions are made on the underlying coupled electron–nuclear dynamics, the reconstruction procedure can be applied to describe the general problem of the decay of highly excited states in other molecular targets.
  • Item
    Signatures of attosecond electronic–nuclear dynamics in the one-photon ionization of molecular hydrogen: analytical model versusab initiocalculations
    ([London] : IOP, 2015) Medišauskas, Lukas; Morales, Felipe; Palacios, Alicia; González-Castrillo, Alberto; Plimak, Lev; Smirnova, Olga; Martín, Fernando; Ivanov, Misha Yu
    We present an analytical model based on the time-dependent WKB approximation to reproduce the photoionization spectra of an H2 molecule in the autoionization region. We explore the nondissociative channel, which is the major contribution after one-photon absorption, and we focus on the features arising in the energy differential spectra due to the interference between the direct and the autoionization pathways. These features depend on both the timescale of the electronic decay of the autoionizing state and the time evolution of the vibrational wavepacket created in this state. With full ab initio calculations and with a one-dimensional approach that only takes into account the nuclear wavepacket associated to the few relevant electronic states we compare the ground state, the autoionizing state, and the background continuum electronic states. Finally, we illustrate how these features transform from molecular-like to atomic-like by increasing the mass of the system, thus making the electronic decay time shorter than the nuclear wavepacket motion associated with the resonant state. In other words, autoionization then occurs faster than the molecular dissociation into neutrals.
  • Item
    Strong-field assisted extreme-ultraviolet lasing in atoms and molecules
    ([Bad Honnef] : Dt. Physikalische Ges., 2017-07-10) Bredtmann, Timm; Patchkovskii, Serguei; Ivanov, Misha Yu
    Using ab-initio simulations, we demonstrate amplification of extreme-ultraviolet (XUV) radiation during transient absorption in a high-harmonic generation type process using the example of the hydrogen atom. The strong IR driving field rapidly depletes the initial ground state while populating excited electronic states through frustrated tunnelling, thereby creating a population inversion. Concomitant XUV lasing is demonstrated by explicit inclusion of the XUV seed in our simulations, allowing a thorough analysis in terms of this transient absorption setup. Possibilities for increasing this gain, e.g. through preexcitation of excited states, change of the atomic gain medium or through multi-center effects in molecules, are demonstrated. Our findings should lead to a reinterpretation of recent experiments.
  • Item
    Strong-field ionization of clusters using two-cycle pulses at 1.8 μm
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Schütte, Bernd; Ye, Peng; Patchkovskii, Serguei; Austin, Dane R.; Brahms, Christian; Strüber, Christian; Witting, Tobias; Ivanov, Misha Yu; Tisch, John W. G.; Marangos, Jon P.
    The interaction of intense laser pulses with nanoscale particles leads to the production of high-energy electrons, ions, neutral atoms, neutrons and photons. Up to now, investigations have focused on near-infrared to X-ray laser pulses consisting of many optical cycles. Here we study strong-field ionization of rare-gas clusters (103 to 105 atoms) using two-cycle 1.8 μm laser pulses to access a new interaction regime in the limit where the electron dynamics are dominated by the laser field and the cluster atoms do not have time to move significantly. The emission of fast electrons with kinetic energies exceeding 3 keV is observed using laser pulses with a wavelength of 1.8 μm and an intensity of 1 × 1015 W/cm2, whereas only electrons below 500 eV are observed at 800 nm using a similar intensity and pulse duration. Fast electrons are preferentially emitted along the laser polarization direction, showing that they are driven out from the cluster by the laser field. In addition to direct electron emission, an electron rescattering plateau is observed. Scaling to even longer wavelengths is expected to result in a highly directional current of energetic electrons on a few-femtosecond timescale.