Search Results

Now showing 1 - 3 of 3
  • Item
    Ligand-Controlled Palladium-Catalyzed Carbonylation of Alkynols : Highly Selective Synthesis of α-Methylene-β-Lactones
    (Weinheim : Wiley-VCH, 2020) Ge, Yao; Ye, Fei; Liu, Jiawang; Yang, Ji; Spannenberg, Anke; Jiao, Haijun; Jackstell, Ralf; Beller, Matthias
    The first general and regioselective Pd-catalyzed cyclocarbonylation to give α-methylene-β-lactones is reported. Key to the success for this process is the use of a specific sterically demanding phosphine ligand based on N-arylated imidazole (L11) in the presence of Pd(MeCN)2Cl2 as pre-catalyst. A variety of easily available alkynols provide under additive-free conditions the corresponding α-methylene-β-lactones in moderate to good yields with excellent regio- and diastereoselectivity. The applicability of this novel methodology is showcased by the direct carbonylation of biologically active molecules including natural products. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Selective catalytic two-step process for ethylene glycol from carbon monoxide
    ([London] : Nature Publishing Group UK, 2016) Dong, Kaiwu; Elangovan, Saravanakumar; Sang, Rui; Spannenberg, Anke; Jackstell, Ralf; Junge, Kathrin; Li, Yuehui; Beller, Matthias
    Upgrading C1 chemicals (for example, CO, CO/H2, MeOH and CO2) with C-C bond formation is essential for the synthesis of bulk chemicals. In general, these industrially important processes (for example, Fischer Tropsch) proceed at drastic reaction conditions (>250 °C; high pressure) and suffer from low selectivity, which makes high capital investment necessary and requires additional purifications. Here, a different strategy for the preparation of ethylene glycol (EG) via initial oxidative coupling and subsequent reduction is presented. Separating coupling and reduction steps allows for a completely selective formation of EG (99%) from CO. This two-step catalytic procedure makes use of a Pd-catalysed oxycarbonylation of amines to oxamides at room temperature (RT) and subsequent Ru- or Fe-catalysed hydrogenation to EG. Notably, in the first step the required amines can be efficiently reused. The presented stepwise oxamide-mediated coupling provides the basis for a new strategy for selective upgrading of C1 chemicals.
  • Item
    Palladium-Catalyzed Cascade Carbonylation to α,β-Unsaturated Piperidones via Selective Cleavage of Carbon-Carbon Triple Bonds
    (Weinheim : Wiley-VCH, 2021) Ge, Yao; Ye, Fei; Yang, Ji; Spannenberg, Anke; Jiao, Haijun; Jackstell, Ralf; Beller, Matthias
    A direct and selective synthesis of α,β-unsaturated piperidones by a new palladium-catalyzed cascade carbonylation is described. In the presented protocol, easily available propargylic alcohols react with aliphatic amines to provide a broad variety of interesting heterocycles. Key to the success of this transformation is a remarkable catalytic cleavage of the present carbon–carbon triple bond by using a specific catalyst with 2-diphenylphosphinopyridine as ligand and appropriate reaction conditions. Mechanistic studies and control experiments revealed branched unsaturated acid 11 as crucial intermediate. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH