Search Results

Now showing 1 - 7 of 7
  • Item
    Less Unfavorable Salt Bridges on the Enzyme Surface Result in More Organic Cosolvent Resistance
    (Weinheim : Wiley-VCH, 2021) Cui, Haiyang; Eltoukhy, Lobna; Zhang, Lingling; Markel, Ulrich; Jaeger, Karl-Erich; Davari, Mehdi D.; Schwaneberg, Ulrich
    Biocatalysis for the synthesis of fine chemicals is highly attractive but usually requires organic (co-)solvents (OSs). However, native enzymes often have low activity and resistance in OSs and at elevated temperatures. Herein, we report a smart salt bridge design strategy for simultaneously improving OS resistance and thermostability of the model enzyme, Bacillus subtilits Lipase A (BSLA). We combined comprehensive experimental studies of 3450 BSLA variants and molecular dynamics simulations of 36 systems. Iterative recombination of four beneficial substitutions yielded superior resistant variants with up to 7.6-fold (D64K/D144K) improved resistance toward three OSs while exhibiting significant thermostability (thermal resistance up to 137-fold, and half-life up to 3.3-fold). Molecular dynamics simulations revealed that locally refined flexibility and strengthened hydration jointly govern the highly increased resistance in OSs and at 50–100 °C. The salt bridge redesign provides protein engineers with a powerful and likely general approach to design OSs- and/or thermal-resistant lipases and other α/β-hydrolases. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    Are Directed Evolution Approaches Efficient in Exploring Nature’s Potential to Stabilize a Lipase in Organic Cosolvents?
    (Basel : MDPI, 2017) Markel, Ulrich; Zhu, Leilei; Frauenkron-Machedjou, Victorine; Zhao, Jing; Bocola, Marco; Davari, Mehdi; Jaeger, Karl-Erich; Schwaneberg, Ulrich
    Despite the significant advances in the field of protein engineering, general design principles to improve organic cosolvent resistance of enzymes still remain undiscovered. Previous studies drew conclusions to engineer enzymes for their use in water-miscible organic solvents based on few amino acid substitutions. In this study, we conduct a comparison of a Bacillus subtilis lipase A (BSLA) library—covering the full natural diversity of single amino acid substitutions at all 181 positions of BSLA—with three state of the art random mutagenesis methods: error-prone PCR (epPCR) with low and high mutagenesis frequency (epPCR-low and high) as well as a transversion-enriched Sequence Saturation Mutagenesis (SeSaM-Tv P/P) method. Libraries were searched for amino acid substitutions that increase the enzyme’s resistance to the water-miscible organic cosolvents 1,4-dioxane (DOX), 2,2,2-trifluoroethanol (TFE), and dimethyl sulfoxide (DMSO). Our analysis revealed that 5%–11% of all possible single substitutions (BSLA site-saturation mutagenesis (SSM) library) contribute to improved cosolvent resistance. However, only a fraction of these substitutions (7%–12%) could be detected in the three random mutagenesis libraries. To our knowledge, this is the first study that quantifies the capability of these diversity generation methods generally employed in directed evolution campaigns and compares them to the entire natural diversity with a single substitution. Additionally, the investigation of the BSLA SSM library revealed only few common beneficial substitutions for all three cosolvents as well as the importance of introducing surface charges for organic cosolvent resistance—most likely due to a stronger attraction of water molecules. © 2017 by the authors.
  • Item
    How to Engineer Organic Solvent Resistant Enzymes: Insights from Combined Molecular Dynamics and Directed Evolution Study
    (Weinheim : Wiley-VCH, 2020) Cui, Haiyang; Stadtmüller, Tom H.J.; Jiang, Qianjia; Jaeger, Karl-Erich; Schwaneberg, Ulrich; Davari, Mehdi D.
    Expanding synthetic capabilities to routinely employ enzymes in organic solvents (OSs) is a dream for protein engineers and synthetic chemists. Despite significant advances in the field of protein engineering, general and transferable design principles to improve the OS resistance of enzymes are poorly understood. Herein, we report a combined computational and directed evolution study of Bacillus subtlis lipase A (BSLA) in three OSs (i. e., 1,4-dioxane, dimethyl sulfoxide, 2,2,2-trifluoroethanol) to devise a rational strategy to guide engineering OS resistant enzymes. Molecular dynamics simulations showed that OSs reduce BSLA activity and resistance in OSs by (i) stripping off essential water molecules from the BLSA surface mainly through H-bonds binding; and (ii) penetrating the substrate binding cleft leading to inhibition and conformational change. Interestingly, integration of computational results with “BSLA-SSM” variant library (3439 variants; all natural diversity with amino acid exchange) revealed two complementary rational design strategies: (i) surface charge engineering, and (ii) substrate binding cleft engineering. These strategies are most likely applicable to stabilize other lipases and enzymes and assist experimentalists to design organic solvent resistant enzymes with reduced time and screening effort in lab experiments. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA
  • Item
    Computer-Assisted Recombination (CompassR) Teaches us How to Recombine Beneficial Substitutions from Directed Evolution Campaigns
    (Weinheim : Wiley-VCH, 2020) Cui, Haiyang; Cao, Hao; Cai, Haiying; Jaeger, Karl-Erich; Davari, Mehdi D.; Schwaneberg, Ulrich
    A main remaining challenge in protein engineering is how to recombine beneficial substitutions. Systematic recombination studies show that poorly performing variants are usually obtained after recombination of 3 to 4 beneficial substitutions. This limits researchers in exploiting nature's potential in generating better enzymes. The Computer-assisted Recombination (CompassR) strategy provides a selection guide for beneficial substitutions that can be recombined to gradually improve enzyme performance by analysis of the relative free energy of folding (ΔΔGfold). The performance of CompassR was evaluated by analysis of 84 recombinants located on 13 positions of Bacillus subtilis lipase A. The finally obtained variant F17S/V54K/D64N/D91E had a 2.7-fold improved specific activity in 18.3 % (v/v) 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]). In essence, the deducted CompassR rule allows recombination of beneficial substitutions in an iterative manner and empowers researchers to generate better enzymes in a time-efficient manner. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Consensus model of a cyanobacterial light-dependent protochlorophyllide oxidoreductase in its pigment-free apo-form and photoactive ternary complex
    (London : Springer Nature, 2019) Schneidewind, Judith; Krause, Frank; Bocola, Marco; Stadler, Andreas Maximilian; Davari, Mehdi D.; Schwaneberg, Ulrich; Jaeger, Karl-Erich; Krauss, Ulrich
    Photosynthetic organisms employ two different enzymes for the reduction of the C17 = C18 double bond of protochlorophyllide (Pchlide), yielding the chlorophyll precursor chlorophyllide. First, a nitrogenase-like, light-independent (dark-operative) Pchlide oxidoreductase and secondly, a light-dependent Pchlide oxidoreductase (LPOR). For the latter enzyme, despite decades of research, no structural information is available. Here, we use protein structure modelling, molecular dynamics (MD) simulations combined with multi-wavelength analytical ultracentrifugation (MWA-AUC) and small angle X-ray scattering (SAXS) experiments to derive a consensus model of the LPOR apoprotein and the substrate/cofactor/LPOR ternary complex. MWA-AUC and SAXS experiments independently demonstrate that the apoprotein is monomeric, while ternary complex formation induces dimerization. SAXS-guided modelling studies provide a full-length model of the apoprotein and suggest a tentative mode of dimerization for the LPOR ternary complex, supported by published cross-link constraints. Our study provides a first impression of the LPOR structural organization.
  • Item
    Aqueous ionic liquids redistribute local enzyme stability via long-range perturbation pathways
    (Gotenburg : Research Network of Computational and Structural Biotechnology (RNCSB), 2021) El Harrar, Till; Frieg, Benedikt; Davari, Mehdi D.; Jaeger, Karl-Erich; Schwaneberg, Ulrich; Gohlke, Holger
    Ionic liquids (IL) and aqueous ionic liquids (aIL) are attractive (co-)solvents for biocatalysis due to their unique properties. On the other hand, the incubation of enzymes in IL or aIL often reduces enzyme activity. Recent studies proposed various aIL-induced effects to explain the reduction, classified as direct effects, e.g., local dehydration or competitive inhibition, and indirect effects, e.g., structural perturbations or disturbed catalytic site integrity. However, the molecular origin of indirect effects has largely remained elusive. Here we show by multi-μs long molecular dynamics simulations, free energy computations, and rigidity analyses that aIL favorably interact with specific residues of Bacillus subtilis Lipase A (BsLipA) and modify the local structural stability of this model enzyme by inducing long-range perturbations of noncovalent interactions. The perturbations percolate over neighboring residues and eventually affect the catalytic site and the buried protein core. Validation against a complete experimental site saturation mutagenesis library of BsLipA (3620 variants) reveals that the residues of the perturbation pathways are distinguished sequence positions where substitutions highly likely yield significantly improved residual activity. Our results demonstrate that identifying these perturbation pathways and specific IL ion-residue interactions there effectively predicts focused variant libraries with improved aIL tolerance.
  • Item
    Electron transfer pathways in a light, oxygen, voltage (LOV) protein devoid of the photoactive cysteine
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2017) Kopka, Benita; Magerl, Kathrin; Savitsky, Anton; Davari, Mehdi D.; Röllen, Katrin; Bocola, Marco; Dick, Bernhard; Schwaneberg, Ulrich; Jaeger, Karl-Erich; Krauss, Ulrich
    Blue-light absorption by the flavin chromophore in light, oxygen, voltage (LOV) photoreceptors triggers photochemical reactions that lead to the formation of a flavin-cysteine adduct. While it has long been assumed that adduct formation is essential for signaling, it was recently shown that LOV photoreceptor variants devoid of the photoactive cysteine can elicit a functional response and that flavin photoreduction to the neutral semiquinone radical is sufficient for signal transduction. Currently, the mechanistic basis of the underlying electron- (eT) and proton-transfer (pT) reactions is not well understood. We here reengineered pT into the naturally not photoreducible iLOV protein, a fluorescent reporter protein derived from the Arabidopsis thaliana phototropin-2 LOV2 domain. A single amino-acid substitution (Q489D) enabled efficient photoreduction, suggesting that an eT pathway is naturally present in the protein. By using a combination of site-directed mutagenesis, steady-state UV/Vis, transient absorption and electron paramagnetic resonance spectroscopy, we investigate the underlying eT and pT reactions. Our study provides strong evidence that several Tyr and Trp residues, highly conserved in all LOV proteins, constitute the eT pathway for flavin photoreduction, suggesting that the propensity for photoreduction is evolutionary imprinted in all LOV domains, while efficient pT is needed to stabilize the neutral semiquinone radical.