Search Results

Now showing 1 - 2 of 2
  • Item
    Exploring uncertainties in global crop yield projections in a large ensemble of crop models and CMIP5 and CMIP6 climate scenarios
    (Bristol : IOP Publ., 2021) Mueller, Christoph; Franke, James; Jaegermeyr, Jonas; Ruane, Alex C.; Elliott, Joshua; Moyer, Elisabeth; Heinke, Jens; Falloon, Pete D.; Folberth, Christian; Francois, Louis
    Concerns over climate change are motivated in large part because of their impact on human society. Assessing the effect of that uncertainty on specific potential impacts is demanding, since it requires a systematic survey over both climate and impacts models. We provide a comprehensive evaluation of uncertainty in projected crop yields for maize, spring and winter wheat, rice, and soybean, using a suite of nine crop models and up to 45 CMIP5 and 34 CMIP6 climate projections for three different forcing scenarios. To make this task computationally tractable, we use a new set of statistical crop model emulators. We find that climate and crop models contribute about equally to overall uncertainty. While the ranges of yield uncertainties under CMIP5 and CMIP6 projections are similar, median impact in aggregate total caloric production is typically more negative for the CMIP6 projections (+1% to −19%) than for CMIP5 (+5% to −13%). In the first half of the 21st century and for individual crops is the spread across crop models typically wider than that across climate models, but we find distinct differences between crops: globally, wheat and maize uncertainties are dominated by the crop models, but soybean and rice are more sensitive to the climate projections. Climate models with very similar global mean warming can lead to very different aggregate impacts so that climate model uncertainties remain a significant contributor to agricultural impacts uncertainty. These results show the utility of large-ensemble methods that allow comprehensively evaluating factors affecting crop yields or other impacts under climate change. The crop model ensemble used here is unbalanced and pulls the assumption that all projections are equally plausible into question. Better methods for consistent model testing, also at the level of individual processes, will have to be developed and applied by the crop modeling community.
  • Item
    Financial Feasibility of Water Conservation in Agriculture
    (Hoboken, NJ : Wiley-Blackwell, 2021) Siderius, Christian; Biemans, Hester; Conway, Declan; Immerzeel, Walter; Jaegermeyr, Jonas; Ahmad, Bashir; Hellegers, Petra
    Global water use for food production needs to be reduced to remain within planetary boundaries, yet the financial feasibility of crucial measures to reduce water use is poorly quantified. Here, we introduce a novel method to compare the costs of water conservation measures with the added value that reallocation of water savings might generate if used for expansion of irrigation. Based on detailed water accounting through the use of a high-resolution hydrology-crop model, we modify the traditional cost curve approach with an improved estimation of demand and increasing marginal cost per water conservation measure combination, adding a correction to control for impacts on downstream water availability. We apply the method to three major river basins in the Indo-Gangetic plain (Indus, Ganges and Brahmaputra), a major global food producing region but increasingly water stressed. Our analysis shows that at basin level only about 10% (Brahmaputra) to just over 20% (Indus and Ganges) of potential water savings would be realized; the equilibrium price for water is too low to make the majority of water conservation measures cost effective. The associated expansion of irrigated area is moderate, about 7% in the Indus basin, 5% in the Ganges and negligible in the Brahmaputra, but farmers' gross profit increases more substantially, by 11%. Increasing the volumetric cost of irrigation water influences supply and demand in a similar way and has little influence on water reallocation. Controlling for the impact on return flows is important and more than halves the amount of water available for reallocation.