Search Results

Now showing 1 - 10 of 15
  • Item
    Large deviations for the capacity in dynamic spatial relay networks
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Hirsch, Christian; Jahnel, Benedikt
    We derive a large deviation principle for the space-time evolution of users in a relay network that are unable to connect due to capacity constraints. The users are distributed according to a Poisson point process with increasing intensity in a bounded domain, whereas the relays are positioned deterministically with given limiting density. The preceding work on capacity for relay networks by the authors describes the highly simplified setting where users can only enter but not leave the system. In the present manuscript we study the more realistic situation where users leave the system after a random transmission time. For this we extend the point process techniques developed in the preceding work thereby showing that they are not limited to settings with strong monotonicity properties.
  • Item
    Space-time large deviations in capacity-constrained relay networks
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Hirsch, Christian; Jahnel, Benedikt; Patterson, Robert
    We consider a single-cell network of random transmitters and fixed relays in a bounded domain of Euclidean space. The transmitters arrive over time and select one relay according to a spatially inhomogeneous preference kernel. Once a transmitter is connected to a relay, the connection remains and the relay is occupied. If an occupied relay is selected by another transmitters with later arrival time, this transmitter becomes frustrated. We derive a large deviation principle for the space-time evolution of frustrated transmitters in the high-density regime.
  • Item
    Gibbsian representation for point processes via hyperedge potentials
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Jahnel, Benedikt; Külske, Christof
    We consider marked point processes on the d-dimensional euclidean space, defined in terms of a quasilocal specification based on marked Poisson point processes. We investigate the possibility of constructing uniformly absolutely convergent Hamiltonians in terms of hyperedge potentials in the sense of Georgii [2]. These potentials are natural generalizations of physical multibody potentials which are useful in models of stochastic geometry.
  • Item
    The Widom-Rowlinson model under spin flip: Immediate loss and sharp recovery of quasilocality
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Jahnel, Benedikt; Külske, Christof
    We consider the continuum Widom-Rowlinson model under independent spin-flip dynamics and investigate whether and when the time-evolved point process has an (almost) quasilocal specification (Gibbs-property of the time-evolved measure). Our study provides a first analysis of a Gibbs-non-Gibbs transition for point particles in Euclidean space. We find a picture of loss and recovery, in which even more regularity is lost faster than it is for time-evolved spin models on lattices. We show immediate loss of quasilocality in the percolation regime, with full measure of discontinuity points for any specification. For the color-asymmetric percolating model, there is a transition from this non-a.s. quasilocal regime back to an everywhere Gibbsian regime. At the sharp reentrance time tG > 0 the model is a.s. quasilocal. For the colorsymmetric model there is no reentrance. On the constructive side, for all t > tG, we provide everywhere quasilocal specifications for the time-evolved measures and give precise exponential estimates on the influence of boundary conditions.
  • Item
    Extremal decomposition for random Gibbs measures
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Cotar, Codina; Jahnel, Benedikt; Külske, Christof
    The concept of metastate measures on the states of a random spin system was introduced to be able to treat the large-volume asymptotics for complex quenched random systems, like spin glasses, which may exhibit chaotic volume dependence in the strong-coupling regime. We consider the general issue of the extremal decomposition for Gibbsian specifications which depend measurably on a parameter that may describe a whole random environment in the infinite volume. Given a random Gibbs measure, as a measurable map from the environment space, we prove measurability of its decomposition measure on pure states at fixed environment, with respect to the environment. As a general corollary we obtain that, for any metastate, there is an associated decomposition metastate, which is supported on the extremes for almost all environments, and which has the same barycenter.
  • Item
    Lower large deviations for geometric functionals
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Hirsch, Christian; Jahnel, Benedikt; Tóbiás, András
    This work develops a methodology for analyzing large-deviation lower tails associated with geometric functionals computed on a homogeneous Poisson point process. The technique applies to characteristics expressed in terms of stabilizing score functions exhibiting suitable monotonicity properties. We apply our results to clique counts in the random geometric graph, intrinsic volumes of Poisson--Voronoi cells, as well as power-weighted edge lengths in the random geometric, κ-nearest neighbor and relative neighborhood graph.
  • Item
    Phase transitions for a model with uncountable spin space on the Cayley tree: The general case
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Botirov, Golibjon; Jahnel, Benedikt
    In this paper we complete the analysis of a statistical mechanics model on Cayley trees of any degree, started in [EsHaRo12, EsRo10, BoEsRo13, JaKuBo14, Bo17]. The potential is of nearest-neighbor type and the local state space is compact but uncountable. Based on the system parameters we prove existence of a critical value θ c such that for θ≤θ c there is a unique translation-invariant splitting Gibbs measure. For θ c < θ there is a phase transition with exactly three translation-invariant splitting Gibbs measures. The proof rests on an analysis of fixed points of an associated non-linear Hammerstein integral operator for the boundary laws.
  • Item
    Disruptive events in high-density cellular networks
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Keeler, Paul; Jahnel, Benedikt; Maye, Oliver; Aschenbach, Daniel; Brzozowski, Marcin
    Stochastic geometry models are used to study wireless networks, particularly cellular phone networks, but most of the research focuses on the typical user, often ignoring atypical events, which can be highly disruptive and of interest to network operators. We examine atypical events when a unexpected large proportion of users are disconnected or connected by proposing a hybrid approach based on ray launching simulation and point process theory. This work is motivated by recent results [12] using large deviations theory applied to the signal-to-interference ratio. This theory provides a tool for the stochastic analysis of atypical but disruptive events, particularly when the density of transmitters is high. For a section of a European city, we introduce a new stochastic model of a single network cell that uses ray launching data generated with the open source RaLaNS package, giving deterministic path loss values. We collect statistics on the fraction of (dis)connected users in the uplink, and observe that the probability of an unexpected large proportion of disconnected users decreases exponentially when the transmitter density increases. This observation implies that denser networks become more stable in the sense that the probability of the fraction of (dis)connected users deviating from its mean, is exponentially small. We also empirically obtain and illustrate the density of users for network configurations in the disruptive event, which highlights the fact that such bottleneck behaviour not only stems from too many users at the cell boundary, but also from the near-far effect of many users in the immediate vicinity of the base station. We discuss the implications of these findings and outline possible future research directions.
  • Item
    Phase transitions for chase-escape models on Gilbert graphs
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Hinsen, Alexander; Jahnel, Benedikt; Cali, Eli; Wary, Jean-Philippe
    We present results on phase transitions of local and global survival in a two-species model on Gilbert graphs. At initial time there is an infection at the origin that propagates on the Gilbert graph according to a continuous-time nearest-neighbor interacting particle system. The Gilbert graph consists of susceptible nodes and nodes of a second type, which we call white knights. The infection can spread on susceptible nodes without restriction. If the infection reaches a white knight, this white knight starts to spread on the set of infected nodes according to the same mechanism, with a potentially different rate, giving rise to a competition of chase and escape. We show well-definedness of the model, isolate regimes of global survival and extinction of the infection and present estimates on local survival. The proofs rest on comparisons to the process on trees, percolation arguments and finite-degree approximations of the underlying random graphs.
  • Item
    Attractor properties for irreversible and reversible interacting particle systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Jahnel, Benedikt; Külske, Christof
    We consider translation-invariant interacting particle systems on the lattice with finite local state space admitting at least one Gibbs measure as a time-stationary measure. The dynamics can be irreversible but should satisfy some mild non-degeneracy conditions. We prove that weak limit points of any trajectory of translation-invariant measures, satisfying a non-nullness condition, are Gibbs states for the same specification as the time-stationary measure. This is done under the additional assumption that zero entropy loss of the limiting measure w.r.t. the time-stationary measure implies that they are Gibbs measures for the same specification.We also give an alternate version of the last condition such that the non-nullness requirement can be dropped. For dynamics admitting a reversible Gibbs measure the alternative condition can be verified, which yields the attractor property for such dynamics. This generalizes convergence results using relative entropy techniques to a large class of dynamics including irreversible and non-ergodic ones. We use this to show synchronization for the rotation dynamics exhibited in citeJaKu12 possibly at low temperature, and possibly non-reversible. We assume the additional regularity properties on the dynamics: 1 There is at least one stationary measure which is a Gibbs measure. 2 Zero loss of relative entropy density under dynamics implies the Gibbs property.