Search Results

Now showing 1 - 10 of 30
  • Item
    Phase transitions for chase-escape models on Gilbert graphs
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Hinsen, Alexander; Jahnel, Benedikt; Cali, Eli; Wary, Jean-Philippe
    We present results on phase transitions of local and global survival in a two-species model on Gilbert graphs. At initial time there is an infection at the origin that propagates on the Gilbert graph according to a continuous-time nearest-neighbor interacting particle system. The Gilbert graph consists of susceptible nodes and nodes of a second type, which we call white knights. The infection can spread on susceptible nodes without restriction. If the infection reaches a white knight, this white knight starts to spread on the set of infected nodes according to the same mechanism, with a potentially different rate, giving rise to a competition of chase and escape. We show well-definedness of the model, isolate regimes of global survival and extinction of the infection and present estimates on local survival. The proofs rest on comparisons to the process on trees, percolation arguments and finite-degree approximations of the underlying random graphs.
  • Item
    Attractor properties for irreversible and reversible interacting particle systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Jahnel, Benedikt; Külske, Christof
    We consider translation-invariant interacting particle systems on the lattice with finite local state space admitting at least one Gibbs measure as a time-stationary measure. The dynamics can be irreversible but should satisfy some mild non-degeneracy conditions. We prove that weak limit points of any trajectory of translation-invariant measures, satisfying a non-nullness condition, are Gibbs states for the same specification as the time-stationary measure. This is done under the additional assumption that zero entropy loss of the limiting measure w.r.t. the time-stationary measure implies that they are Gibbs measures for the same specification.We also give an alternate version of the last condition such that the non-nullness requirement can be dropped. For dynamics admitting a reversible Gibbs measure the alternative condition can be verified, which yields the attractor property for such dynamics. This generalizes convergence results using relative entropy techniques to a large class of dynamics including irreversible and non-ergodic ones. We use this to show synchronization for the rotation dynamics exhibited in citeJaKu12 possibly at low temperature, and possibly non-reversible. We assume the additional regularity properties on the dynamics: 1 There is at least one stationary measure which is a Gibbs measure. 2 Zero loss of relative entropy density under dynamics implies the Gibbs property.
  • Item
    Malware propagation in urban D2D networks
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Hinsen, Alexander; Jahnel, Benedikt; Cali, Eli; Wary, Jean-Philippe
    We introduce and analyze models for the propagation of malware in pure D2D networks given via stationary Cox--Gilbert graphs. Here, the devices form a Poisson point process with random intensity measure λ, Λ where Λ is stationary and given, for example, by the edge-length measure of a realization of a Poisson--Voronoi tessellation that represents an urban street system. We assume that, at initial time, a typical device at the center of the network carries a malware and starts to infect neighboring devices after random waiting times. Here we focus on Markovian models, where the waiting times are exponential random variables, and non-Markovian models, where the waiting times feature strictly positive minimal and finite maximal waiting times. We present numerical results for the speed of propagation depending on the system parameters. In a second step, we introduce and analyze a counter measure for the malware propagation given by special devices called white knights, which have the ability, once attacked, to eliminate the malware from infected devices and turn them into white knights. Based on simulations, we isolate parameter regimes in which the malware survives or is eliminated, both in the Markovian and non-Markovian setting.
  • Item
    Agent-based simulations for coverage extensions in 5G networks and beyond
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Ghribi, Chaima; Cali, Eli; Hirsch, Christian; Jahnel, Benedikt
    Device-to-device (D2D) communications is one of the key emerging technologies for the fifth generation (5G) networks and beyond. It enables direct communication between mobile users and thereby extends coverage for devices lacking direct access to the cellular infrastructure and hence enhances network capacity. D2D networks are complex, highly dynamic and will be strongly augmented by intelligence for decision making at both the edge and core of the network, which makes them particularly difficult to predict and analyze. Conventionally, D2D systems are evaluated, investigated and analyzed using analytical and probabilistic models (e.g., from stochastic geometry). However, applying classical simulation and analytical tools to such a complex system is often hard to track and inaccurate. In this paper, we present a modeling and simulation framework from the perspective of complex-systems science and exhibit an agent-based model for the simulation of D2D coverage extensions. We also present a theoretical study to benchmark our proposed approach for a basic scenario that is less complicated to model mathematically. Our simulation results show that we are indeed able to predict coverage extensions for multi-hop scenarios and quantify the effects of street-system characteristics and pedestrian mobility on the connection time of devices to the base station (BS). To our knowledge, this is the first study that applies agent-based simulations for coverage extensions in D2D.
  • Item
    Agent-based modeling and simulation for malware spreading in D2D networks
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Benomar, Ziyad; Ghribi, Chaima; Cali, Eli; Hinsen, Alexander; Jahnel, Benedikt
    This paper presents a new multi-agent model for simulating malware propagation in device-to-device (D2D) 5G networks. This model allows to understand and analyze mobile malware-spreading dynamics in such highly dynamical networks. Additionally, we present a theoretical study to validate and benchmark our proposed approach for some basic scenarios that are less complicated to model mathematically and also to highlight the key parameters of the model. Our simulations identify critical thresholds for em no propagation and for em maximum malware propagation and make predictions on the malware-spread velocity as well as device-infection rates. To the best of our knowledge, this paper is the first study applying agent-based simulations for malware propagation in D2D.
  • Item
    Disruptive events in high-density cellular networks
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Keeler, Paul; Jahnel, Benedikt; Maye, Oliver; Aschenbach, Daniel; Brzozowski, Marcin
    Stochastic geometry models are used to study wireless networks, particularly cellular phone networks, but most of the research focuses on the typical user, often ignoring atypical events, which can be highly disruptive and of interest to network operators. We examine atypical events when a unexpected large proportion of users are disconnected or connected by proposing a hybrid approach based on ray launching simulation and point process theory. This work is motivated by recent results [12] using large deviations theory applied to the signal-to-interference ratio. This theory provides a tool for the stochastic analysis of atypical but disruptive events, particularly when the density of transmitters is high. For a section of a European city, we introduce a new stochastic model of a single network cell that uses ray launching data generated with the open source RaLaNS package, giving deterministic path loss values. We collect statistics on the fraction of (dis)connected users in the uplink, and observe that the probability of an unexpected large proportion of disconnected users decreases exponentially when the transmitter density increases. This observation implies that denser networks become more stable in the sense that the probability of the fraction of (dis)connected users deviating from its mean, is exponentially small. We also empirically obtain and illustrate the density of users for network configurations in the disruptive event, which highlights the fact that such bottleneck behaviour not only stems from too many users at the cell boundary, but also from the near-far effect of many users in the immediate vicinity of the base station. We discuss the implications of these findings and outline possible future research directions.
  • Item
    Sharp thresholds for Gibbs-non-Gibbs transition in the fuzzy Potts models with a Kac-type interaction
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Jahnel, Benedikt; Külske, Christof
    We investigate the Gibbs properties of the fuzzy Potts model on the $d$-dimensional torus with Kac interaction. We use a variational approach for profiles inspired by that of Fernández, den Hollander and Martínez citeFeHoMa14 for their study of the Gibbs-non-Gibbs transitions of a dynamical Kac-Ising model on the torus. As our main result, we show that the mean-field thresholds dividing Gibbsian from non-Gibbsian behavior are sharp in the fuzzy Kac-Potts model. On the way to this result we prove a large deviation principle for color profiles with diluted total mass densities and use monotocity arguments
  • Item
    Connection intervals in multi-scale dynamic networks
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Hirsch, Christian; Jahnel, Benedikt; Cali, Elie
    We consider a hybrid spatial communication system in which mobile nodes can connect to static sinks in a bounded number of intermediate relaying hops. We describe the distribution of the connection intervals of a typical mobile node, i.e., the intervals of uninterrupted connection to the family of sinks. This is achieved in the limit of many hops, sparse sinks and growing time horizons. We identify three regimes illustrating that the limiting distribution depends sensitively on the scaling of the time horizon.
  • Item
    The typical cell in anisotropic tessellations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Hirsch, Christian; Jahnel, Benedikt; Hinsen, Alexander; Cali, Elie
    The typical cell is a key concept for stochastic-geometry based modeling in communication networks, as it provides a rigorous framework for describing properties of a serving zone associated with a component selected at random in a large network. We consider a setting where network components are located on a large street network. While earlier investigations were restricted to street systems without preferred directions, in this paper we derive the distribution of the typical cell in Manhattan-type systems characterized by a pattern of horizontal and vertical streets. We explain how the mathematical description can be turned into a simulation algorithm and provide numerical results uncovering novel effects when compared to classical isotropic networks.
  • Item
    Limiting shape for first-passage percolation models on random geometric graphs
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Coletti, Cristian F.; de Lima, Lucas R.; Hinsen, Alexander; Jahnel, Benedikt; Valesin, Daniel R.
    Let a random geometric graph be defined in the supercritical regime for the existence of a unique infinite connected component in Euclidean space. Consider the first-passage percolation model with independent and identically distributed random variables on the random infinite connected component. We provide sufficient conditions for the existence of the asymptotic shape and we show that the shape is an Euclidean ball. We give some examples exhibiting the result for Bernoulli percolation and the Richardson model. For the Richardson model we further show that it converges weakly to a branching process in the joint limit of large intensities and slow passing times.