Search Results

Now showing 1 - 9 of 9
  • Item
    Dendritic glycopolymers based on dendritic polyamine scaffolds: view on their synthetic approaches, characteristics and potential for biomedical applications
    (London : Soc., 2014) Appelhans, Dietmar; Klajnert-Maculewicz, Barbara; Janaszewska, Anna; Lazniewska, Joanna; Voit, Brigitte
    In this review we highlight the potential for biomedical applications of dendritic glycopolymers based on polyamine scaffolds. The complex interplay of the molecular characteristics of the dendritic architectures and their specific interactions with various (bio)molecules are elucidated with various examples. A special role of the individual sugar units attached to the dendritic scaffolds and their density is identified, which govern ionic and H-bond interactions, and biological targeting, but to a large extent are also responsible for the significantly reduced toxicity of the dendritic glycopolymers compared to their polyamine scaffolds. Thus, the application of dendritic glycopolymers in drug delivery systems for gene transfection but also as therapeutics in neurodegenerative diseases has great promise.
  • Item
    Unusual Enhancement of Doxorubicin Activity on Co-Delivery with Polyhedral Oligomeric Silsesquioxane (POSS)
    (Basel : MDPI, 2017) Sobierajska, Ewelina; Konopka, Malgorzata; Janaszewska, Anna; Piorecka, Kinga; Blauz, Andrzej; Klajnert-Maculewicz, Barbara; Stanczyk, Maciej; Stanczyk, Wlodzimierz A.
    Polyhedral oligomeric silsesquioxane (POSS), bearing eight 3-chloroammoniumpropyl substituents, was studied as a potential nanocarrier in co-delivery systems with doxorubicin (DOX). The toxicity of doxorubicin and POSS:DOX complexes at four different molar ratios (1:1; 1:2, 1:4, 1:8) towards microvascular endothelial cells (HMEC-1), breast cancer cells (MCF-7), and human cervical cancer endothelial cells (HeLa) was determined. The rate of penetration of the components into the cells, their cellular localization and the hydrodynamic diameter of the complexes was also determined. A cytotoxicity profile of POSS:DOX complexes indicated that the POSS:DOX system at the molar ratio of 1:8 was more effective than free DOX. Confocal images showed that DOX co-delivery with POSS allowed for more effective penetration of doxorubicin through the cell membrane. Taking all the results into account, it can be claimed that the polyhedral oligomeric silsesquioxane (T8-POSS) is a promising, complex nanocarrier for doxorubicin delivery.
  • Item
    Complexing Methylene Blue with Phosphorus Dendrimers to Increase Photodynamic Activity
    (Basel : MDPI, 2017) Dabrzalska, Monika; Janaszewska, Anna; Zablocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara
    The efficiency of photodynamic therapy is limited mainly due to low selectivity, unfavorable biodistribution of photosensitizers, and long-lasting skin sensitivity to light. However, drug delivery systems based on nanoparticles may overcome the limitations mentioned above. Among others, dendrimers are particularly attractive as carriers, because of their globular architecture and high loading capacity. The goal of the study was to check whether an anionic phosphorus dendrimer is suitable as a carrier of a photosensitizer—methylene blue (MB). As a biological model, basal cell carcinoma cell lines were used. We checked the influence of the MB complexation on its singlet oxygen production ability using a commercial fluorescence probe. Next, cellular uptake, phototoxicity, reactive oxygen species (ROS) generation, and cell death were investigated. The MB-anionic dendrimer complex (MB-1an) was found to generate less singlet oxygen; however, the complex showed higher cellular uptake and phototoxicity against basal cell carcinoma cell lines, which was accompanied with enhanced ROS production. Owing to the obtained results, we conclude that the photodynamic activity of MB complexed with an anionic dendrimer is higher than free MB against basal cell carcinoma cell lines.
  • Item
    In vitro studies of polyhedral oligo silsesquioxanes: Evidence for their low cytotoxicity
    (Basel : MDPI, 2015) Janaszewska, Anna; Gradzinska, Kinga; Marcinkowska, Monika; Klajnert-Maculewicz, Barbara; Stanczyk, Wlodzimierz A.
    As scientific literature considers polyhedral oligosilsesquioxanes (POSS) as potential drug delivery systems, it is necessary to check their impact on mammalian cells. Toxicity of octaammonium chloride salt of octaaminopropyl polyhedral oligomeric silsesquioxane (oap-POSS) towards two cell lines: mouse neuroblastoma (N2a) and embryonic mouse hippocampal cells (mHippoE-18) was studied. Experiments consisted of analysis of a cell cycle, cell viability, amount of apoptotic and necrotic cells, and generation of reactive oxygen species (ROS). POSS caused a shift in the cell population from the S and M/G2 phases to the G0/G1 phase. However, the changes affected less than 10% of the cell population and were not accompanied by increased cytotoxicity. POSS did not induce either apoptosis or necrosis and did not generate reactive oxygen species. A cytotoxicity profile of POSS makes it a promising starting material as drug carrier.
  • Item
    Multicomponent Conjugates of Anticancer Drugs and Monoclonal Antibody with PAMAM Dendrimers to Increase Efficacy of HER-2 Positive Breast Cancer Therapy
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2019) Marcinkowska, Monika; Stanczyk, Maciej; Janaszewska, Anna; Sobierajska, Ewelina; Chworos, Arkadiusz; Klajnert-Maculewicz, Barbara
    Purpose: Conjugation of nanocarriers with antibodies that bind to specific membrane receptors that are overexpressed in cancer cells enables targeted delivery. In the present study, we developed and synthesised two PAMAM dendrimer-trastuzumab conjugates that carried docetaxel or paclitaxel, specifically targeted to cells which overexpressed HER-2. Methods: The 1H NMR, 13C NMR, FTIR and RP-HPLC were used to analyse the characteristics of the products and assess their purity. The toxicity of PAMAM-trastuzumab, PAMAM-doc-trastuzumab and PAMAM-ptx-trastuzumab conjugates was determined using MTT assay and compared with free trastuzumab, docetaxel and paclitaxel toward HER-2-positive (SKBR-3) and negative (MCF-7) human breast cancer cell lines. The cellular uptake and internal localisation were studied using flow cytometry and confocal microscopy, respectively. Results: The PAMAM-drug-trastuzumab conjugates in particular showed extremely high toxicity toward the HER-2-positive SKBR-3 cells and very low toxicity towards to HER-2-negative MCF-7 cells. As expected, the HER-2-positive SKBR-3 cell line accumulated trastuzumab from both conjugates rapidly; but surprisingly, although a large amount of PAMAM-ptx-trastuzumab conjugate was observed in the HER-2-negative MCF-7 cells. Confocal microscopy confirmed the intracellular localisation of analysed compounds. The key result of fluorescent imaging was the identification of strong selective binding of the PAMAM-doc-trastuzumab conjugate with HER-2-positive SKBR-3 cells only. Conclusions: Our results confirm the high selectivity of PAMAM-doc-trastuzumab and PAMAM-ptx-trastuzumab conjugates for HER-2-positive cells, and demonstrate the utility of trastuzumab as a targeting agent. Therefore, the analysed conjugates present an promising approach for the improvement of efficacy of targeted delivery of anticancer drugs such as docetaxel or paclitaxel. © 2019, The Author(s).
  • Item
    Sugar Modification Enhances Cytotoxic Activity of PAMAM-Doxorubicin Conjugate in Glucose-Deprived MCF-7 Cells – Possible Role of GLUT1 Transporter
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2019) Sztandera, Krzysztof; Działak, Paula; Marcinkowska, Monika; Stańczyk, Maciej; Gorzkiewicz, Michał; Janaszewska, Anna; Klajnert-Maculewicz, Barbara
    Purpose: In order to overcome the obstacles and side effects of classical chemotherapy, numerous studies have been performed to develop the treatment based on targeted transport of active compounds directly to the site of action. Since tumor cells are featured with intensified glucose metabolism, we set out to develop innovative, glucose-modified PAMAM dendrimer for the delivery of doxorubicin to breast cancer cells. Methods: PAMAM-dox-glc conjugate was synthesized and characterized by 1H NMR, FT-IR, size and zeta potential measurements. The drug release rate from conjugate was evaluated by dialysis under different pH conditions. The expression level of GLUT family receptors in cells cultured in full and glucose-deprived medium was evaluated by quantitative real-time RT-PCR and flow cytometry. The cytotoxicity of conjugate in presence or absence of GLUT1 inhibitors was determined by MTT assay. Results: We showed that PAMAM-dox-glc conjugate exhibits pH-dependent drug release and increased cytotoxic activity compared to free drug in cells cultured in medium without glucose. Further, we proved that these cells overexpress transporters of GLUT family. The toxic effect of conjugate was eliminated by the application of specific GLUT1 inhibitors. Conclusion: Our findings revealed that the glucose moiety plays a crucial role in the recognition of cells with high expression of GLUT receptors. By selectively blocking GLUT1 transporter we showed its importance for the cytotoxic activity of PAMAM-dox-glc conjugate. These results suggest that PAMAM-glucose formulations may constitute an efficient platform for the specific delivery of anticancer drugs to tumor cells overexpressing transporters of GLUT family. © 2019, The Author(s).
  • Item
    Conjugate of PAMAM Dendrimer, Doxorubicin and Monoclonal Antibody—Trastuzumab: The New Approach of a Well-Known Strategy
    (Basel : MDPI, 2018) Marcinkowska, Monika; Sobierajska, Ewelina; Stanczyk, Maciej; Janaszewska, Anna; Chworos, Arkadiusz; Klajnert-Maculewicz, Barbara
    The strategy utilizing trastuzumab, a humanized monoclonal antibody against human epidermal growth receptor 2 (HER-2), as a therapeutic agent in HER-2 positive breast cancer therapy seems to have advantage over traditional chemotherapy, especially when given in combination with anticancer drugs. However, the effectiveness of single antibody or antibody conjugated with chemotherapeutics is still far from ideal. Antibody–dendrimer conjugates hold the potential to improve the targeting and release of active substance at the tumor site. In the present study, we developed and synthesized PAMAM dendrimer–trastuzumab conjugates carrying doxorubicin (dox) specifically to cells overexpressing HER-2. 1HNMR, FTIR and RP-HPLC were used to characterize the products and analyze their purity. Toxicity of PAMAM–trastuzumab and PAMAM–dox–trastuzumab conjugates compared with free trastuzumab and doxorubicin towards HER-2 positive (SKBR-3) and negative (MCF-7) human breast cancer cell lines was determined using MTT assay. Furthermore, the cellular uptake and cellular localization were studied by flow cytometry and confocal microscopy, respectively. A cytotoxicity profile of above mentioned compounds indicated that conjugate PAMAM–dox–trastuzumab was more effective when compared to free drug or the conjugate PAMAM–trastuzumab. Moreover, these results reveal that trastuzumab can be used as a targeting agent in PAMAM–dox–trastuzumab conjugate. Therefore PAMAM–dox–trastuzumab conjugate might be an interesting proposition which could lead to improvements in the effectiveness of drug delivery systems for tumors that overexpress HER-2.
  • Item
    Molecular mechanisms of antitumor activity of PAMAM dendrimer conjugates with anticancer drugs and a monoclonal antibody
    (Basel : MDPI, 2019) Marcinkowska, Monika; Stanczyk, Maciej; Janaszewska, Anna; Gajek, Arkadiusz; Ksiezak, Malgorzata; Dzialak, Paula; Klajnert-Maculewicz, Barbara
    Taxanes are considered fundamental drugs in the treatment of breast cancer, but despite the similarities, docetaxel (doc) and paclitaxel (ptx) work differently. For this reason, it is interesting to identify mechanisms of antitumor activity of PAMAM dendrimer conjugates that carry docetaxel or paclitaxel and monoclonal antibody trastuzumab, specifically targeted to cells which overexpressed HER-2. For this purpose, the impact on the level of reactive oxygen species, the mitochondrial membrane potential, cell cycle distribution and the activity of caspases-3/7, -8 and -9 of PAMAM-doc-trastuzumab and PAMAM-ptx-trastuzumab conjugates was determined and compared with free docetaxel and paclitaxel toward HER-2-positive (SKBR-3) and negative (MCF-7) human breast cancer cell lines. Moreover, apoptosis and necrosis were studied using flow cytometry and confocal microscopy, respectively. Our studies show the complexity of the potential mechanism of cytotoxic action of PAMAM-drug-trastuzumab conjugates that should be sought as a resultant of oxidative stress, mitochondrial activation of the caspase cascade and the HER-2 receptor blockade.
  • Item
    Cytotoxicity of dendrimers
    (Basel : MDPI, 2019) Janaszewska, Anna; Lazniewska, Joanna; Trzepiński, Przemysław; Klajnert-Maculewicz, Barbara
    Drug delivery systems are molecular platforms in which an active compound is packed into or loaded on a biocompatible nanoparticle. Such a solution improves the activity of the applied drug or decreases its side effects. Dendrimers are promising molecular platforms for drug delivery due to their unique properties. These macromolecules are known for their defined size, shape, and molecular weight, as well as their monodispersity, the presence of the void space, tailorable structure, internalization by cells, selectivity toward cells and intracellular components, protection of guest molecules, and controllable release of the cargo. Dendrimers were tested as carriers of various molecules and, simultaneously, their toxicity was examined using different cell lines. It was discovered that, in general, dendrimer cytotoxicity depended on the generation, the number of surface groups, and the nature of terminal moieties (anionic, neutral, or cationic). Higher cytotoxicity occurred for higher-generation dendrimers and for dendrimers with positive charges on the surface. In order to decrease the cytotoxicity of dendrimers, scientists started to introduce different chemical modifications on the periphery of the nanomolecule. Dendrimers grafted with polyethylene glycol (PEG), acetyl groups, carbohydrates, and other moieties did not affect cell viability, or did so only slightly, while still maintaining other advantageous properties. Dendrimers clearly have great potential for wide utilization as drug and gene carriers. Moreover, some dendrimers have biological properties per se, being anti-fungal, anti-bacterial, or toxic to cancer cells without affecting normal cells. Therefore, intrinsic cytotoxicity is a comprehensive problem and should be considered individually depending on the potential destination of the nanoparticle. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.