Search Results

Now showing 1 - 2 of 2
  • Item
    Development of electrically conductive microstructures based on polymer/CNT nanocomposites via two-photon polymerization
    (Amsterdam [u.a.] : Elsevier, 2017) Staudinger, U.; Zyla, G.; Krause, Beate; Janke, A.; Fischer, D.; Esen, C.; Voit, B.; Ostendorf, A.
    Femtosecond laser-induced two-photon polymerization (2PP) of carbon nanofiller doped polymers was utilized to produce electrically conductive microstructures, which are expected to be applicable as microelectronic components or micro-electromechanical systems in sensors. The nanocomposites were processed by compounding an inorganic-organic hybrid material with two different types (short and long) of single walled carbon nanotubes (SWCNTs). Different SWCNT contents were dispersed in the polymer by sonication to adjust the electrical conductivity of the nanocomposites. Low surface resistivity values of ~ 4.6 Ã— 105 Î©/sq. could be measured for coated reference films with a thickness of 30 Î¼m having an exceptionally low SWCNT content of 0.01 wt% of the long type of SWCNTs. In contrast, a higher minimum resistivity of 1.5 Ã— 106 Î©/sq. was exhibited for composites with a higher content, 2 wt%, of short SWCNTs. The structural quality of the microstructures processed by 2PP was mainly influenced by the dispersion quality of the SWCNTs. To characterize the electrical conductivity, conductive atomic force microscopy was applied for the first time. In microstructures with 0.05 wt% of the long type of SWCNTs, a contact current could be detected over a wide range of the measured area visualizing the electrical conductive CNT network, which has not been reported before.
  • Item
    Influence of the hydrophobicity of polyelectrolytes on polyelectrolyte complex formation and complex particle structure and shape
    (Basel : MDPI AG, 2011) Mende, M.; Schwarz, S.; Zschoche, S.; Petzold, G.; Janke, A.
    Polyelectrolyte complexes (PECs) were prepared by structural uniform and strongly charged cationic and anionic modified alternating maleic anhydride copolymers. The hydrophobicity of the polyelectrolytes was changed by the comonomers (ethylene, isobutylene and styrene). Additionally, the n -/n + ratio of the molar charges of the polyelectrolytes and the procedure of formation were varied. The colloidal stability of the systems and the size, shape, and structure of the PEC particles were investigated by turbidimetry, dynamic light scattering (DLS) and atomic force microscopy (AFM). Dynamic light scattering indicates that beside large PEC particle aggregates distinct smaller particles were formed by the copolymers which have the highest hydrophobicity (styrene). These findings could be proved by AFM. Fractal dimension (D), root mean square (RMS) roughness and the surface profiles of the PEC particles adsorbed on mica allow the following conclusions: the higher the hydrophobicity of the polyelectrolytes, the broader is the particle size distribution and the minor is the swelling of the PEC particles. Hence, the most compact particles are formed with the very hydrophobic copolymer.