Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Cargo shuttling by electrochemical switching of core–shell microgels obtained by a facile one-shot polymerization

2019, Mergel, Olga, Schneider, Sabine, Tiwari, Rahul, Kühn, Philipp T., Keskin, Damla, Stuart, Marc C. A., Schöttner, Sebastian, de Kanter, Martinus, Noyong, Michael, Caumanns, Tobias, Mayer, Joachim, Janzen, Christoph, Simon, Ulrich, Gallei, Markus, Wöll, Dominik, van Rijn, Patrick, Plamper, Felix A.

Controlling and understanding the electrochemical properties of electroactive polymeric colloids is a highly topical but still a rather unexplored field of research. This is especially true when considering more complex particle architectures like stimuli-responsive microgels, which would entail different kinetic constraints for charge transport within one particle. We synthesize and electrochemically address dual stimuli responsive core-shell microgels, where the temperature-responsiveness modulates not only the internal structure, but also the microgel electroactivity both on an internal and on a global scale. In detail, a facile one-step precipitation polymerization results in architecturally advanced poly(N-isopropylacrylamide-co-vinylferrocene) P(NIPAM-co-VFc) microgels with a ferrocene (Fc)-enriched (collapsed/hard) core and a NIPAM-rich shell. While the remaining Fc units in the shell are electrochemically accessible, the electrochemical activity of Fc in the core is limited due to the restricted mobility of redox active sites and therefore restricted electron transfer in the compact core domain. Still, prolonged electrochemical action and/or chemical oxidation enable a reversible adjustment of the internal microgel structure from core-shell microgels with a dense core to completely oxidized microgels with a highly swollen core and a denser corona. The combination of thermo-sensitive and redox-responsive units being part of the network allows for efficient amplification of the redox response on the overall microgel dimension, which is mainly governed by the shell. Further, it allows for an electrochemical switching of polarity (hydrophilicity/hydrophobicity) of the microgel, enabling an electrochemically triggered uptake and release of active guest molecules. Hence, bactericidal drugs can be released to effectively kill bacteria. In addition, good biocompatibility of the microgels in cell tests suggests suitability of the new microgel system for future biomedical applications. © 2019 The Royal Society of Chemistry.

Loading...
Thumbnail Image
Item

Enabling the measurement of particle sizes in stirred colloidal suspensions by embedding dynamic light scattering into an automated probe head

2016, de Kanter, Martinus, Meyer-Kirschner, Julian, Viell, Jörn, Mitsos, Alexander, Kather, Michael, Pich, Andrij, Janzen, Christoph

A novel probe head design is introduced, which enables in-line monitoring of particle sizes in undiluted stirred fluids using dynamic light scattering. The novel probe head separates a small sample volume of 0.65 ml from the bulk liquid by means of an impeller. In this sample volume, particle sizing is performed using a commercially available fiber-optical backscatter probe. While conventional light scattering measurements in stirred media fail due to the superposition of Brownian’ motion and forced convection, undistorted measurements are possible with the proposed probe head. One measurement takes approximately 30 s used for liquid exchange by rotation of the impeller and for collection of scattered light. The probe head is applied for in-line monitoring of the particle growth during microgel synthesis by precipitation polymerization in a one liter laboratory reactor. The in-line measurements are compared to off-line measurements and show a good agreement.