Search Results

Now showing 1 - 2 of 2
  • Item
    Emerging pattern of global change in the upper atmosphere and ionosphere
    (München : European Geopyhsical Union, 2008) Laštovička, J.; Akmaev, R.A.; Beig, G.; Bremer, J.; Emmert, J.T.; Jacobi, C.; Jarvis, M.J.; Nedoluha, G.; Portnyagin, Yu. I.
    In the upper atmosphere, greenhouse gases produce a cooling effect, instead of a warming effect. Increases in greenhouse gas concentrations are expected to induce substantial changes in the mesosphere, thermosphere, and ionosphere, including a thermal contraction of these layers. In this article we construct for the first time a pattern of the observed long-term global change in the upper atmosphere, based on trend studies of various parameters. The picture we obtain is qualitative, and contains several gaps and a few discrepancies, but the overall pattern of observed long-term changes throughout the upper atmosphere is consistent with model predictions of the effect of greenhouse gas increases. Together with the large body of lower atmospheric trend research, our synthesis indicates that anthropogenic emissions of greenhouse gases are affecting the atmosphere at nearly all altitudes between ground and space.
  • Item
    Seasonal variations in the horizontal wind structure from 0-100 km above Rothera station, Antarctica (67° S, 68° W)
    (München : European Geopyhsical Union, 2005) Hibbins, R.E.; Shanklin, J.D.; Espy, P.J.; Jarvis, M.J.; Riggin, D.M.; Fritts, D.C.; Lübken, F.-J.
    A medium frequency spaced-antenna radar has been operating at Rothera station, Antarctica (67° S, 68° W) for two periods, between 1997-1998 and since 2002, measuring winds in the mesosphere and lower thermosphere. In this paper monthly mean winds are derived and presented along with three years of radiosonde balloon data for comparison with the HWM-93 model atmosphere and other high latitude southern hemisphere sites. The observed meridional winds are slightly more northwards than those predicted by the model above 80 km in the winter months and below 80 km in summer. In addition, the altitude of the summer time zero crossing of the zonal winds above the westward jet is overestimated by the model by up to 8 km. These data are then merged with the wind climatology obtained from falling sphere measurements made during the PORTA campaign at Rothera in early 1998 and the HWM-93 model atmosphere to generate a complete zonal wind climatology between 0 and 100 km as a benchmark for future studies at Rothera. A westwards (eastwards) maximum of 44 ms-1 at 67 km altitude occurs in mid December (62 ms-1 at 37 km in mid July). The 0 ms-1 wind contour reaches a maximum altitude of 90 km in mid November and a minimum altitude of 18 km in January extending into mid March at 75 km and early October at 76 km.