Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Diffraction at GaAs/Fe3Si core/shell nanowires: The formation of nanofacets

2016, Jenichen, B., Hanke, M., Hilse, M., Herfort, J., Trampert, A., Erwin, S.C.

GaAs/Fe3Si core/shell nanowire structures were fabricated by molecular-beam epitaxy on oxidized Si(111) substrates and investigated by synchrotron x-ray diffraction. The surfaces of the Fe3Si shells exhibit nanofacets. These facets consist of well pronounced Fe3Si{111} planes. Density functional theory reveals that the Si-terminated Fe3Si{111} surface has the lowest energy in agreement with the experimental findings. We can analyze the x-ray diffuse scattering and diffraction of the ensemble of nanowires avoiding the signal of the substrate and poly-crystalline films located between the wires. Fe3Si nanofacets cause streaks in the x-ray reciprocal space map rotated by an azimuthal angle of 30° compared with those of bare GaAs nanowires. In the corresponding TEM micrograph the facets are revealed only if the incident electron beam is oriented along [1 1 ̄ 0] in accordance with the x-ray results. Additional maxima in the x-ray scans indicate the onset of chemical reactions between Fe3Si shells and GaAs cores occurring at increased growth temperatures.

Loading...
Thumbnail Image
Item

Structural properties of Co2TiSi films on GaAs(001)

2016, Jenichen, B., Herfort, J., Hanke, M., Jahn, U., Kong, X., Dau, M.T., Trampert, A., Kirmse, H., Erwin, S.C.

Co2TiSi films were grown by molecular beam epitaxy on GaAs(001) and analyzed using reflection high-energy electron diffraction, and electron microscopy. In addition, X-ray diffraction was combined with lattice parameter calculations by density functional theory comparing the L21 and B2 structures and considering the influence of non-stoichiometry. Columnar growth is found and attributed to inhomogeneous epitaxial strain from non-random alloying. In films with thicknesses up to 13 nm, these columns may be the origin of perpendicular magnetization with the easy axis perpendicular to the sample surface. We found L21 and B2 ordered regions, however the [Co]/[Ti]-ratio is changing in dependence of the position in the film. The resulting columnar structure is leading to anisotropic B2-ordering with the best order parallel to the axes of the columns.

Loading...
Thumbnail Image
Item

Growth of Fe3Si/Ge/Fe3Si trilayers on GaAs(001) using solid-phase epitaxy

2017, Gaucher, S., Jenichen, B., Kalt, J., Jahn, U., Trampert, A., Herfort, J.

Ferromagnetic Heusler alloys can be used in combination with semiconductors to create spintronic devices. The materials have cubic crystal structures, making it possible to grow lattice-matched heterojunctions by molecular beam epitaxy. However, the development of devices is limited by the difficulty of growing epitaxial semiconductors over metallic surfaces while preventing chemical reactions, a requirement to obtain abrupt interfaces and achieve efficient spin-injection by tunneling. We used a solid-phase epitaxy approach to grow crystalline thin film stacks on GaAs(001) substrates, while preventing interfacial reactions. The crystallized Ge layer forms superlattice regions, which are caused by the migration of Fe and Si atoms into the film. X-ray diffraction and transmission electron microscopy indicate that the trilayers are fully crystalline, lattice-matched, and have ideal interface quality over extended areas.