Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Basins of attraction of chimera states on networks

2022, Li, Qiang, Larosz, Kelly C., Han, Dingding, Ji, Peng, Kurths, Jürgen

Networks of identical coupled oscillators display a remarkable spatiotemporal pattern, the chimera state, where coherent oscillations coexist with incoherent ones. In this paper we show quantitatively in terms of basin stability that stable and breathing chimera states in the original two coupled networks typically have very small basins of attraction. In fact, the original system is dominated by periodic and quasi-periodic chimera states, in strong contrast to the model after reduction, which can not be uncovered by the Ott-Antonsen ansatz. Moreover, we demonstrate that the curve of the basin stability behaves bimodally after the system being subjected to even large perturbations. Finally, we investigate the emergence of chimera states in brain network, through inducing perturbations by stimulating brain regions. The emerged chimera states are quantified by Kuramoto order parameter and chimera index, and results show a weak and negative correlation between these two metrics.

Loading...
Thumbnail Image
Item

How Price-Based Frequency Regulation Impacts Stability in Power Grids: A Complex Network Perspective

2020, Ji, Peng, Zhu, Lipeng, Lu, Chao, Lin, Wei, Kurths, Jürgen

With the deregulation of modern power grids, electricity markets are playing a more and more important role in power grid operation and control. However, it is still questionable how the real-time electricity price-based operation affects power grid stability. From a complex network perspective, here we investigate the dynamical interactions between price-based frequency regulations and physical networks, which results in an interesting finding that a local minimum of network stability occurs when the response strength of generators/consumers to the varying price increases. A case study of the real world-based China Southern Power Grid demonstrates the finding and exhibits a feasible approach to network stability enhancement in smart grids. This also provides guidance for potential upgrade and expansion of the current power grids in a cleaner and safer way. © 2020 Peng Ji et al.

Loading...
Thumbnail Image
Item

Bistable firing pattern in a neural network model

2019, Protachevicz, Paulo R., Borges, Fernando S., Lameu, Ewandson L., Ji, Peng, Iarosz, Kelly C., Kihara, Alexandre H., Caldas, Ibere L., Szezech Jr., Jose D., Baptista, Murilo S., Macau, Elbert E.N., Antonopoulos, Chris G., Batista, Antonio M., Kurths, Jürgen

Excessively high, neural synchronization has been associated with epileptic seizures, one of the most common brain diseases worldwide. A better understanding of neural synchronization mechanisms can thus help control or even treat epilepsy. In this paper, we study neural synchronization in a random network where nodes are neurons with excitatory and inhibitory synapses, and neural activity for each node is provided by the adaptive exponential integrate-and-fire model. In this framework, we verify that the decrease in the influence of inhibition can generate synchronization originating from a pattern of desynchronized spikes. The transition from desynchronous spikes to synchronous bursts of activity, induced by varying the synaptic coupling, emerges in a hysteresis loop due to bistability where abnormal (excessively high synchronous) regimes exist. We verify that, for parameters in the bistability regime, a square current pulse can trigger excessively high (abnormal) synchronization, a process that can reproduce features of epileptic seizures. Then, we show that it is possible to suppress such abnormal synchronization by applying a small-amplitude external current on > 10% of the neurons in the network. Our results demonstrate that external electrical stimulation not only can trigger synchronous behavior, but more importantly, it can be used as a means to reduce abnormal synchronization and thus, control or treat effectively epileptic seizures. © 2019 Protachevicz, Borges, Lameu, Ji, Iarosz, Kihara, Caldas, Szezech, Baptista, Macau, Antonopoulos, Batista and Kurths.