Search Results

Now showing 1 - 7 of 7
Loading...
Thumbnail Image
Item

Copper Iodide on Spacer Fabrics as Textile Thermoelectric Device for Energy Generation

2022, Schmidl, Gabriele, Jia, Guobin, Gawlik, Annett, Lorenz, Philipp, Zieger, Gabriel, Dellith, Jan, Diegel, Marco, Plentz, Jonathan

The integration of electronic functionalities into textiles for use as wearable sensors, energy harvesters, or coolers has become increasingly important in recent years. A special focus is on efficient thermoelectric materials. Copper iodide as a p-type thermoelectrically active, nontoxic material is attractive for energy harvesting and energy generation because of its transparency and possible high-power factor. The deposition of CuI on polyester spacer fabrics by wet chemical processes represents a great potential for use in textile industry for example as flexible thermoelectric energy generators in the leisure or industrial sector as well as in medical technologies. The deposited material on polyester yarn is investigated by electron microscopy, x-ray diffraction and by thermoelectric measurements. The Seebeck coefficient was observed between 112 and 153 µV/K in a temperature range between 30 °C and 90 °C. It is demonstrated that the maximum output power reached 99 nW at temperature difference of 65.5 K with respect to room temperature for a single textile element. However, several elements can be connected in series and the output power can be linear upscaled. Thus, CuI coated on 3D spacer fabrics can be attractive to fabricate thermoelectric devices especially in the lower temperature range for textile medical or leisure applications.

Loading...
Thumbnail Image
Item

Large area graphene deposition on hydrophobic surfaces, flexible textiles, glass fibers, 3D structures, and adhesion of graphene layer

2019, Jia, Guobin, Plentz, Jonathan, Dellith, Jan, Dellith, Andrea, Wahyuono, Ruri Agung, Andrä, Gudrun

Graphene and its derivatives have many superior electrical, thermal, mechanical, chemical, and structural properties, and promise for many applications. One of the issues for scalable applications is the lack of a simple, reliable method that allows the deposit of a well-ordered monolayer using low-cost graphene flakes onto target substrates with different surface properties. Another issue is the adhesion of the deposited graphene thin film, which has not been well investigated yet. Following our former finding of a double self-assembly (DSA) process for efficient deposition of a monolayer of graphene flakes (MGFs), in this work we demonstrate that the DSA process can be applied even on very challenging samples including highly hydrophobic polytetrafluoroethylene (PTFE), flexible textiles, complex 3D objects, and thin glass fibers. Additionally, we tested adhesion of the graphene flakes on the flat glass substrate by scotch tape peel test of the MGFs. The results show that the graphene flakes adhere quite well on the flat glass substrate and most of the graphene flakes stay on the glass. These findings may trigger many large-scale applications of low-cost graphene feedstocks and other 2D materials.

Loading...
Thumbnail Image
Item

Verbundprojekt: Integrationsfähige Siliziumemitter und -detektoren für die optische, CMOS-kompatible On-Chip-Signalübertragung (SILEM),: Teilvorhaben: Physikalische Grundlagen und Technologie des Si-Lichtemitters : Schlussbericht

2008, Kittler, Martin, Arguirov, Tzanimir, Jia, Guobin

[no abstract available]

Loading...
Thumbnail Image
Item

Porous spherical gold nanoparticles via a laser induced process

2022, Schmidl, Gabriele, Raugust, Marc, Jia, Guobin, Dellith, Andrea, Dellith, Jan, Schmidl, Frank, Plentz, Jonathan

Nanoparticles consisting of a mixture of several metals and also porous nanoparticles due to their special structure exhibit properties that find applications in spectroscopic detection or catalysis. Different approaches of top down or bottom up technologies exist for the fabrication of such particles. We present a novel combined approach for the fabrication of spherical porous gold nanoparticles on low-cost glass substrates under ambient conditions using a UV-laser induced particle preparation process with subsequent wet chemical selective etching. In this preparation route, nanometer-sized branched structures are formed in spherical particles. The laser process, which is applied to a silver/gold bilayer system with different individual layer thicknesses, generates spherical mixed particles in a nanosecond range and influences the properties of the fabricated nanoparticles, such as the size and the mixture and thus the spectral response. The subsequent etching process is performed by selective wet chemical removal of silver from the nanoparticles with diluted nitric acid. The gold to silver ratio was investigated by energy-dispersive X-ray spectroscopy. The porosity depends on laser parameters and film thickness as well as on etching parameters such as time. After etching, the surface area of the remaining Au nanoparticles increases which makes these particles interesting for catalysis and also as carrier particles for substances. Such substances can be positioned at defined locations or be released in appropriate environments. Absorbance spectra are also analyzed to show how the altered fractured shape of the particles changes localized plasmon resonances of the resultingt particles.

Loading...
Thumbnail Image
Item

Self-Assembled Graphene/MWCNT Bilayers as Platinum- Free Counter Electrode in Dye-Sensitized Solar Cells

2019, Wahyuono, Ruri Agung, Jia, Guobin, Plentz, Jonathan, Dellith, Andrea, Dellith, Jan, Herrmann-Westendorf, Felix, Seyring, Martin, Presselt, Martin, Andrä, Gudrun, Rettenmayr, Markus, Dietzek, Benjamin

We describe the preparation and properties of bilayers of graphene- and multi-walled carbon nanotubes (MWCNTs) as an alternative to conventionally used platinum-based counter electrode for dye-sensitized solar cells (DSSC). The counter electrodes were prepared by a simple and easy-to-implement double self-assembly process. The preparation allows for controlling the surface roughness of electrode in a layer-by-layer deposition. Annealing under N2 atmosphere improves the electrode's conductivity and the catalytic activity of graphene and MWCNTs to reduce the I3 − species within the electrolyte of the DSSC. The performance of different counter-electrodes is compared for ZnO photoanode-based DSSCs. Bilayer electrodes show higher power conversion efficiencies than monolayer graphene electrodes or monolayer MWCNTs electrodes. The bilayer graphene (bottom)/MWCNTs (top) counter electrode-based DSSC exhibits a maximum power conversion efficiency of 4.1 % exceeding the efficiency of a reference DSSC with a thin film platinum counter electrode (efficiency of 3.4 %). In addition, the double self-assembled counter electrodes are mechanically stable, which enables their recycling for DSSCs fabrication without significant loss of the solar cell performance. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Loading...
Thumbnail Image
Item

Biomimic Vein-Like Transparent Conducting Electrodes with Low Sheet Resistance and Metal Consumption

2020, Jia, Guobin, Plentz, Jonathan, Dellith, Andrea, Schmidt, Christa, Dellith, Jan, Schmidl, Gabriele, Andrä, Gudrun

Abstract: In this contribution, inspired by the excellent resource management and material transport function of leaf veins, the electrical transport function of metallized leaf veins is mimicked from the material transport function of the vein networks. By electroless copper plating on real leaf vein networks with copper thickness of only several hundred nanometre up to several micrometre, certain leaf veins can be converted to transparent conductive electrodes with an ultralow sheet resistance 100 times lower than that of state-of-the-art indium tin oxide thin films, combined with a broadband optical transmission of above 80% in the UV–VIS–IR range. Additionally, the resource efficiency of the vein-like electrode is characterized by the small amount of material needed to build up the networks and the low copper consumption during metallization. In particular, the high current density transport capability of the electrode of > 6000 A cm−2 was demonstrated. These superior properties of the vein-like structures inspire the design of high-performance transparent conductive electrodes without using critical materials and may significantly reduce the Ag consumption down to < 10% of the current level for mass production of solar cells and will contribute greatly to the electrode for high power density concentrator solar cells, high power density Li-ion batteries, and supercapacitors.[Figure not available: see fulltext.]. © 2020, © 2020, The Author(s).

Loading...
Thumbnail Image
Item

Fabrication of self-assembled spherical Gold Particles by pulsed UV Laser Treatment

2018, Schmidl, Gabriele, Jia, Guobin, Gawlik, Annett, Kreusch, Jonathan, Schmidl, Frank, Dellith, Jan, Dathe, André, Lin, Zhan-Hong, Huang, Jer-Shing, Plentz, Jonathan

We report on the fabrication of spherical Au spheres by pulsed laser treatment using a KrF excimer laser (248 nm, 25 ns) under ambient conditions as a fast and high throughput fabrication technique. The presented experiments were realized using initial Au layers of 100 nm thickness deposited on optically transparent and low cost Borofloat glass or single-crystalline SrTiO3 substrates, respectively. High (111)-orientation and smoothness (RMS ≈ 1 nm) are the properties of the deposited Au layers before laser treatment. After laser treatment, spheres with size distribution ranging from hundreds of nanometers up to several micrometers were produced. Single-particle scattering spectra with distinct plasmonic resonance peaks are presented to reveal the critical role of optimal irradiation parameters in the process of laser induced particle self-assembly. The variation of irradiation parameters like fluence and number of laser pulses influences the melting, dewetting and solidification process of the Au layers and thus the formation of extremely well shaped spherical particles. The gold layers on Borofloat glass and SrTiO3 are found to show a slightly different behavior under laser treatment. We also discuss the effect of substrates.We report on the fabrication of spherical Au spheres by pulsed laser treatment using a KrF excimer laser (248 nm, 25 ns) under ambient conditions as a fast and high throughput fabrication technique. The presented experiments were realized using initial Au layers of 100 nm thickness deposited on optically transparent and low cost Borofloat glass or single-crystalline SrTiO3 substrates, respectively. High (111)-orientation and smoothness (RMS ≈ 1 nm) are the properties of the deposited Au layers before laser treatment. After laser treatment, spheres with size distribution ranging from hundreds of nanometers up to several micrometers were produced. Single-particle scattering spectra with distinct plasmonic resonance peaks are presented to reveal the critical role of optimal irradiation parameters in the process of laser induced particle self-assembly. The variation of irradiation parameters like fluence and number of laser pulses influences the melting, dewetting and solidification process of the Au layers and thus the formation of extremely well shaped spherical particles. The gold layers on Borofloat glass and SrTiO3 are found to show a slightly different behavior under laser treatment. We also discuss the effect of substrates.