Search Results

Now showing 1 - 2 of 2
  • Item
    On the divergence constraint in mixed finite element methods for incompressible flows
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) John, Volker; Linke, Alexander; Merdon, Christian; Neilan, Michael; Rebholz, Leo G.
    The divergence constraint of the incompressible Navier-Stokes equations is revisited in the mixed finite element framework. While many stable and convergent mixed elements have been developed throughout the past four decades, most classical methods relax the divergence constraint and only enforce the condition discretely. As a result, these methods introduce a pressure-dependent consistency error which can potentially pollute the computed velocity. These methods are not robust in the sense that a contribution from the right-hand side, which in fluences only the pressure in the continuous equations, impacts both velocity and pressure in the discrete equations. This paper reviews the theory and practical implications of relaxing the divergence constraint. Several approaches for improving the discrete mass balance or even for computing divergence-free solutions will be discussed: grad-div stabilization, higher order mixed methods derived on the basis of an exact de Rham complex, H(div)-conforming finite elements, and mixed methods with an appropriate reconstruction of the test functions. Numerical examples illustrate both the potential effects of using non-robust discretizations and the improvements obtained by utilizing pressure-robust discretizations.
  • Item
    On the parameter choice in grad-div stabilization for incompressible flow problems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Jenkins, Eleanor W.; John, Volker; Linke, Alexander; Rebholz, Leo G.
    Grad-div stabilization has been proved to be a very useful tool in discretizations of incompressible flow problems. Standard error analysis for inf-sup stable conforming pairs of finite element spaces predicts that the stabilization parameter should be optimally chosen to be O(1). This paper revisits this choice for the Stokes equations on the basis of minimizing the H1( ) error of the velocity and the L2( ) error of the pressure. It turns out, by applying a refined error analysis, that the optimal parameter choice is more subtle than known so far in the literature. It depends on the used norm, the solution, the family of finite element spaces, and the type of mesh. Depending on the situation, the optimal stabilization parameter might range from being very small to very large. The analytic results are supported by numerical examples.