Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Error analysis of a SUPG-stabilized POD-ROM method for convection-diffusion-reaction equations

2021, John, Volker, Moreau, Baptiste, Novo, Julia

A reduced order model (ROM) method based on proper orthogonal decomposition (POD) is analyzed for convection-diffusion-reaction equations. The streamline-upwind Petrov--Galerkin (SUPG) stabilization is used in the practically interesting case of dominant convection, both for the full order method (FOM) and the ROM simulations. The asymptotic choice of the stabilization parameter for the SUPG-ROM is done as proposed in the literature. This paper presents a finite element convergence analysis of the SUPG-ROM method for errors in different norms. The constants in the error bounds are uniform with respect to small diffusion coefficients. Numerical studies illustrate the performance of the SUPG-ROM method.

Loading...
Thumbnail Image
Item

On reducing spurious oscillations in discontinuous Galerkin (DG) methods for steady-state convection-diffusion-reaction equations

2020, Frerichs, Derk, John, Volker

A standard discontinuous Galerkin (DG) finite element method for discretizing steady-state convection-diffusion-reaction equations is known to be stable and to compute sharp layers in the convection-dominated regime, but also to show large spurious oscillations. This paper studies post-processing methods for reducing the spurious oscillations, which replace the DG solution in a vicinity of layers by a constant or linear approximation. Three methods from the literature are considered and several generalizations and modifications are proposed. Numerical studies with the post-processing methods are performed at two-dimensional examples.