Search Results

Now showing 1 - 2 of 2
  • Item
    A local projection stabilization finite element method with nonlinear crosswind diffusion for convection-diffusion-reaction equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Barrenechea, Gabriel R.; John, Volker; Knobloch, Petr
    An extension of the local projection stabilization (LPS) finite element method for convection-diffusion-reaction equations is presented and analyzed, both in the steady-state and the transient setting. In addition to the standard LPS method, a nonlinear crosswind diffusion term is introduced that accounts for the reduction of spurious oscillations. The existence of a solution can be proved and, depending on the choice of the stabilization parameter, also its uniqueness. Error estimates are derived which are supported by numerical studies. These studies demonstrate also the reduction of the spurious oscillations.
  • Item
    On the parameter choice in grad-div stabilization for incompressible flow problems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Jenkins, Eleanor W.; John, Volker; Linke, Alexander; Rebholz, Leo G.
    Grad-div stabilization has been proved to be a very useful tool in discretizations of incompressible flow problems. Standard error analysis for inf-sup stable conforming pairs of finite element spaces predicts that the stabilization parameter should be optimally chosen to be O(1). This paper revisits this choice for the Stokes equations on the basis of minimizing the H1( ) error of the velocity and the L2( ) error of the pressure. It turns out, by applying a refined error analysis, that the optimal parameter choice is more subtle than known so far in the literature. It depends on the used norm, the solution, the family of finite element spaces, and the type of mesh. Depending on the situation, the optimal stabilization parameter might range from being very small to very large. The analytic results are supported by numerical examples.