Search Results

Now showing 1 - 10 of 39
  • Item
    A unified analysis of algebraic flux correction schemes for convection–diffusion equations
    (Berlin ; Heidelberg : Springer, 2018) Barrenechea, Gabriel R.; John, Volker; Knobloch, Petr; Rankin, Richard
    Recent results on the numerical analysis of algebraic flux correction (AFC) finite element schemes for scalar convection–diffusion equations are reviewed and presented in a unified way. A general form of the method is presented using a link between AFC schemes and nonlinear edge-based diffusion schemes. Then, specific versions of the method, that is, different definitions for the flux limiters, are reviewed and their main results stated. Numerical studies compare the different versions of the scheme.
  • Item
    Vibrations of a laboratory-scale gas-stirred ladle with two eccentric nozzles and multiple sensors
    ([Singapore] : Springer Singapore, 2019) Alia, Najib; Pylvänäinen, Mika; Visuri, Ville-Valtteri; John, Volker; Ollila, Seppo
    During ladle stirring, a gas is injected into the steel bath to generate a mixing of the liquid steel. The optimal process control requires a reliable measurement of the stirring intensity, for which the induced ladle wall vibrations have proved to be a potential indicator. An experimental cold water ladle with two eccentric nozzles and eight mono-axial accelerometers was thus investigated to measure the vibrations. The effect of the sensors’ positions with respect to the gas plugs on the vibration intensity was analyzed, and experimental data on several points of the ladle were collected for future numerical simulations. It is shown that the vibration root-mean-square values depend not only on process parameters, such as gas flow rate, water, and oil heights, but also on the radial and axial positions of the sensors. The vibration intensity is clearly higher, close to the gas plumes, than in the opposite side. If one of the nozzles is clogged, the vibration intensity close to the clogged nozzle drops drastically (−36 to −59%), while the vibrations close to the normal operating nozzle are hardly affected. Based on these results, guidelines are provided for an optimized vibration-based stirring.
  • Item
    Gekoppelte Simulation von Partikelpopulationen in turbulenten Strömungen : Verbundprojekt SimPaTurS ; Teilprojekt Turbulente Strömungen : Schlussbericht
    (Hannover : Technische Informationsbibliothek (TIB), 2010) John, Volker; Suciu, Carina
    [no abstract available]
  • Item
    A numerical method for the simulation of an aggregation-driven population balance system
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Hackbusch, Wolfgang; John, Volker; Khachatryan, Aram; Suciu, Carina
    A population balance system which models the synthesis of urea is studied in this paper. The equations for the flow field, the mass and the energy balances are given in a three-dimensional domain and the equation for the particle size distribution (PSD) in a four-dimensional domain. This problem is convection-dominated and aggregation-driven. Both features require the application of appropriate numerical methods. This paper presents a numerical approach for simulating the population balance system which is based on finite element schemes, a finite difference method and a modern method to evaluate convolution integrals that appear in the aggregation term. Two experiments are considered and the numerical results are compared with experimental data. Unknown parameters in the aggregation kernel have to be calibrated. For appropriately chosen parameters, good agreements are achieved of the experimental data and the numerical results computed with the proposed method. A detailed study of the computational results reveals the influence of different parts of the aggregation kernel.
  • Item
    On (essentially) non-oscillatory discretizations of evolutionary convection-diffusion equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) John, Volker; Novo, Julia
    Finite element and finite difference discretizations for evolutionary convection-diffusion-reaction equations in two and three dimensions are studied which give solutions without or with small under- and overshoots. The studied methods include a linear and a nonlinear FEM-FCT scheme, simple upwinding, an ENO scheme of order 3, and a fifth order WENO scheme. Both finite element methods are combined with the Crank--Nicolson scheme and the finite difference discretizations are coupled with explicit total variation diminishing Runge--Kutta methods. An assessment of the methods with respect to accuracy, size of under- and overshoots, and efficiency is presented, in the situation of a domain which is a tensor product of intervals and of uniform grids in time and space. Some comments to the aspects of adaptivity and more complicated domains are given. The obtained results lead to recommendations concerning the use of the methods.
  • Item
    Error analysis of the SUPG finite element disretization of evolutionary convection-diffusion-reaction equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) John, Volker; Novo, Julia
    Conditions on the stabilization parameters are explored for different approaches in deriving error estimates for the SUPG finite element stabilization of time-dependent convection-diffusion-reaction equations that is combined with the backward Euler method. Standard energy arguments lead to estimates for stabilization parameters that depend on the length of the time step. The stabilization vanishes in the time-continuous limit. However, based on numerical experiences, this seems not to be the correct behavior. For this reason, the time-continuous case is analyzed under certain conditions on the coefficients of the equation and the finite element method. An error estimate with the standard order of convergence is derived for stabilization parameters of the same form that is optimal for the steady-state problem. Numerical studies support the analytical results.
  • Item
    A local projection stabilization/continuous Galerkin-Petrov method for incompressible flow problems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Ahmed, Naveed; John, Volker; Matthies, Gunar; Novo, Julia
    The local projection stabilization (LPS) method in space is considered to approximate the evolutionary Oseen equations. Optimal error bounds independent of the viscosity parameter are obtained in the continuous-in-time case for the approximations of both velocity and pressure. In addition, the fully discrete case in combination with higher order continuous Galerkin-Petrov (cGP) methods is studied. Error estimates of order k + 1 are proved, where k denotes the polynomial degree in time, assuming that the convective term is time-independent. Numerical results show that the predicted order is also achieved in the general case of time-dependent convective terms.
  • Item
    On the efficiency and robustness of the core routine of the quadrature method of moments (QMOM)
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) John, Volker; Thein, Ferdinand
    Three methods are reviewed for computing optimal weights and abscissas which can be used in the Quadrature Method of Moments (QMOM): the Product-Difference Algorithm (PDA), the Long Quotient-Modified Difference Algorithm (LQMDA, variants are also called Wheeler algorithm or Chebyshev algorithm), and the Golub--Welsch Algorithm (GWA). The PDA is traditionally used in applications. It is discussed that the PDA fails in certain situations whereas the LQMDA and the GWA are successful. Numerical studies reveal that the LQMDA is also more efficient than the PDA.
  • Item
    Analysis of a full space-time discretization of the Navier-Stokes equations by a local projection stabilization
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Ahmed, Naveed; Rebollo, Tomás Chacón; John, Volker; Rubino, Samuele
    A finite element error analysis of a local projection stabilization (LPS) method for the time-dependent Navier-Stokes equations is presented. The focus is on the highorder term-by-term stabilization method that has one level, in the sense that it is defined on a single mesh, and in which the projection-stabilized structure of standard LPS methods is replaced by an interpolation-stabilized structure. The main contribution is on proving, theoretically and numerically, the optimal convergence order of the arising fully discrete scheme. In addition, the asymptotic energy balance is obtained for slightly smooth flows. Numerical studies support the analytical results and illustrate the potential of the method for the simulation of turbulent ows. Smooth unsteady flows are simulated with optimal order of accuracy.
  • Item
    Analysis of the PSPG stabilization for the continuous-in-time discretization of the evolutionary stokes equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) John, Volker; Novo, Julia
    Optimal error estimates for the pressure stabilized Petrov-Galerkin (PSPG) method for the continuous-in-time discretization of the evolutionary Stokes equations are proved in the case of regular solutions. The main result is applicable to higher order finite elements. The error bounds for the pressure depend on the error of the pressure at the initial time. An approach is suggested for choosing the discrete initial velocity in such a way that this error is bounded. The "instability of the discrete pressure for small time steps", which is reported in the literature, is discussed on the basis of the analytical results. Numerical studies confirm the theoretical results, showing in particular that this instability does not occur for the proposed initial condition.