Search Results

Now showing 1 - 10 of 46
  • Item
    Optimal control of buoyancy-driven liquid steel stirring modeled with single-phase Navier–Stokes equations
    (Berlin ; Heidelberg : Springer, 2021) Wilbrandt, Ulrich; Alia, Najib; John, Volker
    Gas stirring is an important process used in secondary metallurgy. It allows to homogenize the temperature and the chemical composition of the liquid steel and to remove inclusions which can be detrimental for the end-product quality. In this process, argon gas is injected from two nozzles at the bottom of the vessel and rises by buoyancy through the liquid steel thereby causing stirring, i.e., a mixing of the bath. The gas flow rates and the positions of the nozzles are two important control parameters in practice. A continuous optimization approach is pursued to find optimal values for these control variables. The effect of the gas appears as a volume force in the single-phase incompressible Navier–Stokes equations. Turbulence is modeled with the Smagorinsky Large Eddy Simulation (LES) model. An objective functional based on the vorticity is used to describe the mixing in the liquid bath. Optimized configurations are compared with a default one whose design is based on a setup from industrial practice.
  • Item
    A review of variational multiscale methods for the simulation of turbulent incompressible flows
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Ahmed, Naveed; Rebollo, Tomás Chacón; John, Volker; Rubino, Samuele
    Various realizations of variational multiscale (VMS) methods for simulating turbulent incompressible flows have been proposed in the past fifteen years. All of these realizations obey the basic principles of VMS methods: They are based on the variational formulation of the incompressible Navier-Stokes equations and the scale separation is defined by projections. However, apart from these common basic features, the various VMS methods look quite different. In this review, the derivation of the different VMS methods is presented in some detail and their relation among each other and also to other discretizations is discussed. Another emphasis consists in giving an overview about known results from the numerical analysis of the VMS methods. A few results are presented in detail to highlight the used mathematical tools. Furthermore, the literature presenting numerical studies with the VMS methods is surveyed and the obtained results are summarized.
  • Item
    Finite element pressure stabilizations for incompressible flow problems
    (Berlin : WeierstraĂź-Institut fĂĽr Angewandte Analysis und Stochastik, 2019) John, Volker; Knobloch, Petr; Wilbrandt, Ulrich
    Discretizations of incompressible flow problems with pairs of finite element spaces that do not satisfy a discrete inf-sup condition require a so-called pressure stabilization. This paper gives an overview and systematic assessment of stabilized methods, including the respective error analysis.
  • Item
    ParMooN - a modernized program package based on mapped finite elements
    (Berlin : WeierstraĂź-Institut fĂĽr Angewandte Analysis und Stochastik, 2016) Wilbrandt, Ulrich; Bartsch, Clemens; Ahmed, Naveed; Alia, Najib; Anker, Felix; Blank, Laura; Caiazzo, Alfonso; Ganesa, Sashikumaar; Giere, Swetlana; Matthies, Gunar; Meesala, Raviteja; Shamim, Abdus; Venkatesan, Jagannath; John, Volker
    PARMOON is a program package for the numerical solution of elliptic and parabolic partial differential equations. It inherits the distinct features of its predecessor MOONMD [28]: strict decoupling of geometry and finite element spaces, implementation of mapped finite elements as their definition can be found in textbooks, and a geometric multigrid preconditioner with the option to use different finite element spaces on different levels of the multigrid hierarchy. After having presented some thoughts about in-house research codes, this paper focuses on aspects of the parallelization, which is the main novelty of PARMOON. Numerical studies, performed on compute servers, assess the efficiency of the parallelized geometric multigrid preconditioner in comparison with parallel solvers that are available in external libraries. The results of these studies give a first indication whether the cumbersome implementation of the parallelized geometric multigrid method was worthwhile or not.
  • Item
    Error analysis of a SUPG-stabilized POD-ROM method for convection-diffusion-reaction equations
    (Berlin : WeierstraĂź-Institut fĂĽr Angewandte Analysis und Stochastik, 2021) John, Volker; Moreau, Baptiste; Novo, Julia
    A reduced order model (ROM) method based on proper orthogonal decomposition (POD) is analyzed for convection-diffusion-reaction equations. The streamline-upwind Petrov--Galerkin (SUPG) stabilization is used in the practically interesting case of dominant convection, both for the full order method (FOM) and the ROM simulations. The asymptotic choice of the stabilization parameter for the SUPG-ROM is done as proposed in the literature. This paper presents a finite element convergence analysis of the SUPG-ROM method for errors in different norms. The constants in the error bounds are uniform with respect to small diffusion coefficients. Numerical studies illustrate the performance of the SUPG-ROM method.
  • Item
    Finite elements for scalar convection-dominated equations and incompressible flow problems - A never ending story?
    (Berlin : WeierstraĂź-Institut fĂĽr Angewandte Analysis und Stochastik, 2017) John, Volker; Knobloch, Petr; Novo, Julia
    The contents of this paper is twofold. First, important recent results concerning finite element methods for convection-dominated problems and incompressible flow problems are described that illustrate the activities in these topics. Second, a number of, in our opinion, important problems in these fields are discussed.
  • Item
    On a technique for reducing spurious oscillations in DG solutions of convection-diffusion equations
    (Berlin : WeierstraĂź-Institut fĂĽr Angewandte Analysis und Stochastik, 2022) Frerichs-Mihov, Derk; John, Volker
    This note studies a generalization of a post-processing technique and a novel method inspired by the same technique which significantly reduce spurious oscillations in discontinuous Galerkin solutions of convection-diffusion equations in the convection-dominated regime.
  • Item
    Adaptive time step control for higher order variational time discretizations applied to convection-diffusion equations
    (Berlin : WeierstraĂź-Institut fĂĽr Angewandte Analysis und Stochastik, 2014) Ahmed, Naveed; John, Volker
    Higher order variational time stepping schemes allow an efficient post-processing for computing a higher order solution. This paper presents an adaptive algorithm whose time step control utilizes the post-processed solution. The algorithm is applied to convection-dominated convection-diffusion equations. It is shown that the length of the time step properly reflects the dynamics of the solution. The numerical costs of the adaptive algorithm are discussed.
  • Item
    Direct discretizations of bi-variate population balance systems with finite difference schemes of different order
    (Berlin : WeierstraĂź-Institut fĂĽr Angewandte Analysis und Stochastik, 2013) John, Volker; Suciu, Carina
    The accurate and efficient simulation of bi-variate population balance systems is nowadays a great challenge since the domain spanned by the external and internal coordinates is five-dimensional. This report considers direct discretizations of this equation in tensorproduct domains. In this situation, finite difference methods can be applied. The studied model includes the transport of dissolved potassium dihydrogen phosphate (KDP) and of energy (temperature) in a laminar flow field as well as the nucleation and growth of KDP particles. Two discretizations of the coupled model will be considered which differ only in the discretization of the population balance equation: a first order monotone upwind scheme and a third order essentially on-oscillatory (ENO) scheme. The Dirac term on the right-hand side of this equation is discretized with a finite volume method. The numerical results show that much different results are obtained even in the class of direct discretizations.
  • Item
    A unified analysis of algebraic flux correction schemes for convection–diffusion equations
    (Berlin ; Heidelberg : Springer, 2018) Barrenechea, Gabriel R.; John, Volker; Knobloch, Petr; Rankin, Richard
    Recent results on the numerical analysis of algebraic flux correction (AFC) finite element schemes for scalar convection–diffusion equations are reviewed and presented in a unified way. A general form of the method is presented using a link between AFC schemes and nonlinear edge-based diffusion schemes. Then, specific versions of the method, that is, different definitions for the flux limiters, are reviewed and their main results stated. Numerical studies compare the different versions of the scheme.