Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Efficient and selective hydrogenation of amides to alcohols and amines using a well-defined manganese-PNN pincer complex

2017, Papa, Veronica, Cabrero-Antonino, Jose R., Alberico, Elisabetta, Spanneberg, Anke, Junge, Kathrin, Junge, Henrik, Beller, Matthias

Novel well-defined NNP and PNP manganese pincer complexes have been synthetized and fully characterized. The catalyst Mn-2 containing an imidazolyaminolphosphino ligand shows high activity and selectivity in the hydrogenation of a wide range of secondary and tertiary amides to the corresponding alcohols and amines, under relatively mild conditions. For the first time, more challenging substrates like primary aromatic amides including an actual herbicide can also be hydrogenated using this earth-abundant metal-based pincer catalyst.

Loading...
Thumbnail Image
Item

Earth-abundant photocatalytic systems for the visible-light-driven reduction of CO2 to CO

2017, Rosas-Hernández, Alonso, Steinlechner, Christoph, Junge, Henrik, Beller, Matthias

Herein, we report a highly selective photocatalytic system, based on an in situ copper photosensitizer and an iron catalyst, for the reduction of CO2 to CO. Turnover numbers (TON) up to 487 (5 h) with selectivities up to 99% and ΦCO = 13.3% were observed. Stern-Volmer analysis allowed us to establish a reductive quenching mechanism between the Cu PS and electron donor.

Loading...
Thumbnail Image
Item

An amino acid based system for CO2 capture and catalytic utilization to produce formates

2021, Wei, Duo, Junge, Henrik, Beller, Matthias

Herein, we report a novel amino acid based reaction system for CO2 capture and utilization (CCU) to produce formates in the presence of the naturally occurring amino acid l-lysine. Utilizing a specific ruthenium-based catalyst system, hydrogenation of absorbed carbon dioxide occurs with high activity and excellent productivity. Noteworthy, following the CCU concept, CO2 can be captured from ambient air in the form of carbamates and converted directly to formates in one-pot (TON > 50 000). This protocol opens new potential for transforming captured CO2 from ambient air to C1-related products. © 2021 The Royal Society of Chemistry.

Loading...
Thumbnail Image
Item

Hydrogen production from formic acid catalyzed by a phosphine free manganese complex: Investigation and mechanistic insights

2020, Léval, Alexander, Agapova, Anastasiya, Steinlechner, Christoph, Alberico, Elisabetta, Junge, Henrik, Beller, Matthias

Formic acid dehydrogenation (FAD) is considered as a promising process in the context of hydrogen storage. Its low toxicity, availability and convenient handling make FA attractive as a potential hydrogen carrier. To date, most promising catalysts have been based on noble metals, such as ruthenium and iridium. Efficient non-noble metal systems like iron were designed but manganese remains relatively unexplored for this transformation. In this work, we present a panel of phosphine free manganese catalysts which showed activity and stability in formic acid dehydrogenation. The most promising results were obtained with Mn(pyridine-imidazoline)(CO)3Br yielding >14 l of the H2/CO2 mixture and proved to be stable for more than 3 days. Additionally, this study provides insights into the mechanism of formic acid dehydrogenation. Kinetic experiments, Kinetic Isotopic Effect (KIE), in situ observations, NMR labeling experiments and pH monitoring allow us to propose a catalytic cycle for this transformation.

Loading...
Thumbnail Image
Item

Towards a general ruthenium-catalyzed hydrogenation of secondary and tertiary amides to amines

2016, Cabrero-Antonino, Jose R., Alberico, Elisabetta, Junge, Kathrin, Junge, Henrik, Beller, Matthias

A broad range of secondary and tertiary amides has been hydrogenated to the corresponding amines under mild conditions using an in situ catalyst generated by combining [Ru(acac)3], 1,1,1-tris(diphenylphosphinomethyl)ethane (Triphos) and Yb(OTf)3. The presence of the metal triflate allows to mitigate reaction conditions compared to previous reports thus improving yields and selectivities in the desired amines. The excellent isolated yields of two scale-up experiments corroborate the feasibility of the reaction protocol. Control experiments indicate that, after the initial reduction of the amide carbonyl group, the reaction proceeds through the reductive amination of the alcohol with the amine arising from collapse of the intermediate hemiaminal.