Search Results

Now showing 1 - 8 of 8
  • Item
    A General Regioselective Synthesis of Alcohols by Cobalt-Catalyzed Hydrogenation of Epoxides
    (Weinheim : Wiley-VCH, 2020) Liu, Weiping; Leischner, Thomas; Li, Wu; Junge, Kathrin; Beller, Matthias
    A straightforward methodology for the synthesis of anti-Markovnikov-type alcohols is presented. By using a specific cobalt triphos complex in the presence of Zn(OTf)2 as an additive, the hydrogenation of epoxides proceeds with high yields and selectivities. The described protocol shows a broad substrate scope, including multi-substituted internal and terminal epoxides, as well as a good functional-group tolerance. Various natural-product derivatives, including steroids, terpenoids, and sesquiterpenoids, gave access to the corresponding alcohols in moderate-to-excellent yields. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Cascade Synthesis of Pyrroles from Nitroarenes with Benign Reductants Using a Heterogeneous Cobalt Catalyst
    (Weinheim : Wiley-VCH, 2020) Ryabchuk, Pavel; Leischner, Thomas; Kreyenschulte, Carsten; Spannenberg, Anke; Junge, Kathrin; Beller, Matthias
    A bifunctional 3d-metal catalyst for the cascade synthesis of diverse pyrroles from nitroarenes is presented. The optimal catalytic system Co/NGr-C@SiO2-L is obtained by pyrolysis of a cobalt-impregnated composite followed by subsequent selective leaching. In the presence of this material, (transfer) hydrogenation of easily available nitroarenes and subsequent Paal–Knorr/Clauson-Kass condensation provides >40 pyrroles in good to high yields using dihydrogen, formic acid, or a CO/H2O mixture (WGSR conditions) as reductant. In addition to the favorable step economy, this straightforward domino process does not require any solvents or external co-catalysts. The general synthetic utility of this methodology was demonstrated on a variety of functionalized substrates including the preparation of biologically active and pharmaceutically relevant compounds, for example, (+)-Isamoltane. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    A Stable Manganese Pincer Catalyst for the Selective Dehydrogenation of Methanol
    (Weinheim : Wiley-VCH, 2016-12-2) Andérez-Fernández, María; Vogt, Lydia K.; Fischer, Steffen; Zhou, Wei; Jiao, Haijun; Garbe, Marcel; Elangovan, Saravanakumar; Junge, Kathrin; Junge, Henrik; Ludwig, Ralf; Beller, Matthias
    For the first time, structurally defined manganese pincer complexes catalyze the dehydrogenation of aqueous methanol to hydrogen and carbon dioxide, which is a transformation of interest with regard to the implementation of a hydrogen and methanol economy. Excellent long-term stability was demonstrated for the Mn-PNPiPr catalyst, as a turnover of more than 20 000 was reached. In addition to methanol, other important hydrogen carriers were also successfully dehydrogenated.
  • Item
    Recent Advances in Catalytic Hydrosilylations: Developments beyond Traditional Platinum Catalysts
    (Weinheim : Wiley-VCH, 2021) de Almeida, Leandro Duarte; Wang, Hongli; Junge, Kathrin; Cui, Xinjiang; Beller, Matthias
    Hydrosilylation reactions, which allow the addition of Si−H to C=C/C≡C bonds, are typically catalyzed by homogeneous noble metal catalysts (Pt, Rh, Ir, and Ru). Although excellent activity and selectivity can be obtained, the price, purification, and metal residues of these precious catalysts are problems in the silicone industry. Thus, a strong interest in more sustainable catalysts and for more economic processes exists. In this respect, recently disclosed hydrosilylations using catalysts based on earth-abundant transition metals, for example, Fe, Co, Ni, and Mn, and heterogeneous catalysts (supported nanoparticles and single-atom sites) are noteworthy. This minireview describes the recent advances in this field. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Cobalt-Catalyzed Aqueous Dehydrogenation of Formic Acid
    (Weinheim : Wiley-VCH, 2019) Zhou, Wei; Wei, Zhihong; Spannenberg, Anke; Jiao, Haijun; Junge, Kathrin; Junge, Henrik; Beller, Matthias
    Among the known liquid organic hydrogen carriers, formic acid attracts increasing interest in the context of safe and reversible storage of hydrogen. Here, the first molecularly defined cobalt pincer complex is disclosed for the dehydrogenation of formic acid in aqueous medium under mild conditions. Crucial for catalytic activity is the use of the specific complex 3. Compared to related ruthenium and manganese complexes 7 and 8, this optimal cobalt complex showed improved performance. DFT computations support an innocent non-classical bifunctional outer-sphere mechanism on the triplet state potential energy surface. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Non-Pincer-Type Manganese Complexes as Efficient Catalysts for the Hydrogenation of Esters
    (Weinheim : Wiley-VCH, 2017-4-21) van Putten, Robbert; Uslamin, Evgeny A.; Garbe, Marcel; Liu, Chong; Gonzalez-de-Castro, Angela; Lutz, Martin; Junge, Kathrin; Hensen, Emiel J. M.; Beller, Matthias; Lefort, Laurent; Pidko, Evgeny A.
    Catalytic hydrogenation of carboxylic acid esters is essential for the green production of pharmaceuticals, fragrances, and fine chemicals. Herein, we report the efficient hydrogenation of esters with manganese catalysts based on simple bidentate aminophosphine ligands. Monoligated Mn PN complexes are particularly active for the conversion of esters into the corresponding alcohols at Mn concentrations as low as 0.2 mol % in the presence of sub-stoichiometric amounts of KOtBu base.
  • Item
    Practical Catalytic Cleavage of C(sp3)−C(sp3) Bonds in Amines
    (Weinheim : Wiley-VCH, 2019) Li, Wu; Liu, Weiping; Leonard, David K.; Rabeah, Jabor; Junge, Kathrin; Brgckner, Angelika; Beller, Matthias
    The selective cleavage of thermodynamically stable C(sp3)−C(sp3) single bonds is rare compared to their ubiquitous formation. Herein, we describe a general methodology for such transformations using homogeneous copper-based catalysts in the presence of air. The utility of this novel methodology is demonstrated for Cα−Cβ bond scission in >70 amines with excellent functional group tolerance. This transformation establishes tertiary amines as a general synthon for amides and provides valuable possibilities for their scalable functionalization in, for example, natural products and bioactive molecules. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Selective Acceptorless Dehydrogenation of Primary Amines to Imines by Core-Shell Cobalt Nanoparticles
    (Weinheim : Wiley-VCH, 2020) Cui, Xinjiang; Li, Wu; Junge, Kathrin; Fei, Zhaofu; Beller, Matthias; Dyson, Paul J.
    Core–shell nanocatalysts are attractive due to their versatility and stability. Here, we describe cobalt nanoparticles encapsulated within graphitic shells prepared via the pyrolysis of a cationic poly-ionic liquid (PIL) with a cobalt(II) chloride anion. The resulting material has a core–shell structure that displays excellent activity and selectivity in the self-dehydrogenation and hetero-dehydrogenation of primary amines to their corresponding imines. Furthermore, the catalyst exhibits excellent activity in the synthesis of secondary imines from substrates with various reducible functional groups (C=C, C≡C and C≡N) and amino acid derivatives. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.