Search Results

Now showing 1 - 10 of 17
  • Item
    Moment asymptotics for branching random walks in random environment
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Gün, Onur; König, Wolfgang; Sekulov´c, Ozren
    We consider the long-time behaviour of a branching random walk in random environment on the lattice Zd. The migration of particles proceeds according to simple random walk in continuous time, while the medium is given as a random potential of spatially dependent killing/branching rates. The main objects of our interest are the annealed moments m_np , i.e., the p-th moments over the medium of the n-th moment over the migration and killing/branching, of the local and global population sizes. For n = 1, this is well-understood citeGM98, as m_1 is closely connected with the parabolic Anderson model. For some special distributions, citeA00 extended this to ngeq2, but only as to the first term of the asymptotics, using (a recursive version of) a Feynman-Kac formula for m_n. In this work we derive also the second term of the asymptotics, for a much larger class of distributions. In particular, we show that m_n^p m_1^np are asymptotically equal, up to an error e^o(t). The cornerstone of our method is a direct Feynman-Kac-type formula for mn, which we establish using the spine techniques developed in citeHR1.1
  • Item
    Large deviations for Brownian intersection measures
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) König, Wolfgang; Mukherjee, Chiranjib
    We consider $p$ independent Brownian motions in $R^d$. We assume that $pgeq 2$ and $p(d-2)
  • Item
    The parabolic Anderson model with acceleration and deceleration
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) König, Wolfgang; Schmidt, Sylvia
    We describe the large-time moment asymptotics for the parabolic Anderson model where the speed of the diffusion is coupled with time, inducing an acceleration or deceleration. We find a lower critical scale, below which the mass flow gets stuck. On this scale, a new interesting variational problem arises in the description of the asymptotics. Furthermore, we find an upper critical scale above which the potential enters the asymptotics only via some average, but not via its extreme values. We make out altogether five phases, three of which can be described by results that are qualitatively similar to those from the constant-speed parabolic Anderson model in earlier work by various authors. Our proofs consist of adaptations and refinements of their methods, as well as a variational convergence method borrowed from finite elements theory.
  • Item
    Connection times in large ad hoc mobile networks
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Döring, Hanna; Faraud, Gabriel; König, Wolfgang
    We study connectivity properties in a probabilistic model for a large mobile ad-hoc network. We consider a large number of participants of the system moving randomly, independently and identically distributed in a large domain, with a space-dependent population density of finite, positive order and with a fixed time horizon. Messages are instantly transmitted according to a relay principle, i.e., they are iteratedly forwarded from participant to participant over distances 2R, with 2R the communication radius, until they reach the recipient. In mathematical terms, this is a dynamic continuum percolation model. We consider the connection time of two sample participants, the amount of time over which these two are connected with each other. In the above thermodynamic limit, we find that the connectivity induced by the system can be described in terms of the counterplay of a local, random, and a global, deterministic mechanism, and we give a formula for the limiting behaviour. A prime example of the movement schemes that we consider is the well-known random waypoint model (RWP). Here we describe the decay rate, in the limit of large time horizons, of the probability that the portion of the connection time is less than the expectation.
  • Item
    Branching random walks in random environment: A survey
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) König, Wolfgang
    We consider branching particle processes on discrete structures like the hypercube in a random fitness landscape (i.e., random branching/killing rates). The main question is about the location where the main part of the population sits at a late time, if the state space is large. For answering this, we take the expectation with respect to the migration (mutation) and the branching/killing (selection) mechanisms, for fixed rates. This is intimately connected with the parabolic Anderson model, the heat equation with random potential, a model that is of interest in mathematical physics because of the observed prominent effect of intermittency (local concentration of the mass of the solution in small islands). We present several advances in the investigation of this effect, also related to questions inspired from biology.
  • Item
    Moment asymptotics for multitype branching random walks in random environment
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Gün, Onur; König, Wolfgang; Sekulovic, Ozren
    We study a discrete time multitype branching random walk on a finite space with finite set of types. Particles follow a Markov chain on the spatial space whereas offspring distributions are given by a random field that is fixed throughout the evolution of the particles. Our main interest lies in the averaged (annealed) expectation of the population size, and its long-time asymptotics. We first derive, for fixed time, a formula for the expected population size with fixed offspring distributions, which is reminiscent of a Feynman-Kac formula. We choose Weibull-type distributions with parameter 1/pij for the upper tail of the mean number of j type particles produced by an i type particle. We derive the first two terms of the long-time asymptotics, which are written as two coupled variational formulas, and interpret them in terms of the typical behavior of the system.
  • Item
    Mean-field interaction of Brownian occupation measures. II: A rigorous construction of the Pekar process
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Bolthausen, Erwin; König, Wolfgang; Mukherjee, Chiranjib
    We consider mean-field interactions corresponding to Gibbs measures on interacting Brownian paths in three dimensions. The interaction is self-attractive and is given by a singular Coulomb potential. The logarithmic asymptotics of the partition function for this model were identified in the 1980s by Donsker and Varadhan [DV83] in terms of the Pekar variational formula, which coincides with the behavior of the partition function corresponding to the polaron problem under strong coupling. Based on this, Spohn ([Sp87]) made a heuristic observation that the strong coupling behavior of the polaron path measure, on certain time scales, should resemble a process, named as the itPekar process, whose distribution could somehow be guessed from the limiting asymptotic behavior of the mean-field measures under interest, whose rigorous analysis remained open. The present paper is devoted to a precise analysis of these mean-field path measures and convergence of the normalized occupation measures towards an explicit mixture of the maximizers of the Pekar variational problem. This leads to a rigorous construction of the aforementioned Pekar process and hence, is a contribution to the understanding of the ``mean-field approximation" of the polaron problem on the level of path measures. The method of our proof is based on the compact large deviation theory developed in [MV14], its extension to the uniform strong metric for the singular Coulomb interaction carried out in [KM15], as well as an idea inspired by a itpartial path exchange argument appearing in [BS97]
  • Item
    A large-deviations principle for all the components in a sparse inhomogeneous random graph
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Andreis, Luisa; König, Wolfgang; Langhammer, Heide; Patterson, Robert I. A.
    We study an inhomogeneous sparse random graph, GN, on [N] = { 1,...,N } as introduced in a seminal paper [BJR07] by Bollobás, Janson and Riordan (2007): vertices have a type (here in a compact metric space S), and edges between different vertices occur randomly and independently over all vertex pairs, with a probability depending on the two vertex types. In the limit N → ∞ , we consider the sparse regime, where the average degree is O(1). We prove a large-deviations principle with explicit rate function for the statistics of the collection of all the connected components, registered according to their vertex type sets, and distinguished according to being microscopic (of finite size) or macroscopic (of size ≈ N). In doing so, we derive explicit logarithmic asymptotics for the probability that GN is connected. We present a full analysis of the rate function including its minimizers. From this analysis we deduce a number of limit laws, conditional and unconditional, which provide comprehensive information about all the microscopic and macroscopic components of GN. In particular, we recover the criterion for the existence of the phase transition given in [BJR07].
  • Item
    Large deviations for the local times of a random walk among random conductances in a growing box
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) König, Wolfgang; Wolff, Tilman
    We derive an annealed large deviation principle (LDP) for the normalised and rescaled local times of a continuous-time random walk among random conductances (RWRC) in a time-dependent, growing box in Zd. We work in the interesting case that the conductances are positive, but may assume arbitrarily small values. Thus, the underlying picture of the principle is a joint strategy of small conductance values and large holding times of the walk. The speed and the rate function of our principle are explicit in terms of the lower tails of the conductance distribution as well as the time-dependent size of the box. An interesting phase transition occurs if the thickness parameter of the conductance tails exceeds a certain threshold: for thicker tails, the random walk spreads out over the entire growing box, for thinner tails it stays confined to some bounded region. In fact, in the first case, the rate function turns out to be equal to the p-th power of the p-norm of the gradient of the square root for some p (2d d+2; 2). This extends the Donsker-Varadhan-Gärtner rate function for the local times of Brownian motion (with deterministic environment) from p = 2 to these values. As corollaries of our LDP, we derive the logarithmic asymptotics of the non-exit probability of the RWRC from the growing box, and the Lifshitz tails of the generator of the RWRC, the randomised Laplace operator. To contrast with the annealed, not uniformly elliptic case, we also provide an LDP in the quenched setting for conductances that are bounded and bounded away from zero. The main tool here is a spectral homogenisation result, based on a quenched invariance principle for the RWRC.
  • Item
    A Gibbsian model for message routing in highly dense multi-hop networks
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) König, Wolfgang; Tóbiás, András
    We investigate a probabilistic model for routing in relay-augmented multihop ad-hoc communication networks, where each user sends one message to the base station. Given the (random) user locations, we weigh the family of random, uniformly distributed message trajectories by an exponential probability weight, favouring trajectories with low interference (measured in terms of signal-to-interference ratio) and trajectory families with little congestion (measured by how many pairs of hops use the same relay). Under the resulting Gibbs measure, the system targets the best compromise between entropy, interference and congestion for a common welfare, instead of a selfish optimization. We describe the joint routing strategy in terms of the empirical measure of all message trajectories. In the limit of high spatial density of users, we derive the limiting free energy and analyze the optimal strategy, given as the minimizer(s) of a characteristic variational formula. Interestingly, expressing the congestion term requires introducing an additional empirical measure.