Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Phase- and intensity-resolved measurements of above threshold ionization by few-cycle pulses

2018-06-11, Kübel, M., Arbeiter, M., Burger, C., Kling, Nora G., Pischke, T., Moshammer, R., Fennel, T., Kling, M.F., Bergues, B.

We investigate the carrier-envelope phase (CEP) and intensity dependence of the longitudinal momentum distribution of photoelectrons resulting from above threshold ionization of argon by few-cycle laser pulses. The intensity of the pulses with a center wavelength of 750 nm is varied in a range between 0.7 × 1014 and . Our measurements reveal a prominent maximum in the CEP-dependent asymmetry at photoelectron energies of 2 U P (U P being the ponderomotive potential), that is persistent over the entire intensity range. Further local maxima are observed around 0.3 and 0.8 U P. The experimental results are in good agreement with theoretical results obtained by solving the three-dimensional time-dependent Schrödinger equation. We show that for few-cycle pulses, the amplitude of the CEP-dependent asymmetry provides a reliable measure for the peak intensity on target. Moreover, the measured asymmetry amplitude exhibits an intensity-dependent interference structure at low photoelectron energy, which could be used to benchmark model potentials for complex atoms.

Loading...
Thumbnail Image
Item

Probing multiphoton light-induced molecular potentials

2020, Kübel, M., Spanner, M., Dube, Z., Naumov, A.Yu., Chelkowski, S., Bandrauk, A.D., Vrakking, M.J.J., Corkum, P.B., Villeneuve, D.M., Staudte, A.

The strong coupling between intense laser fields and valence electrons in molecules causes distortions of the potential energy hypersurfaces which determine the motion of the nuclei and influence possible reaction pathways. The coupling strength varies with the angle between the light electric field and valence orbital, and thereby adds another dimension to the effective molecular potential energy surface, leading to the emergence of light-induced conical intersections. Here, we demonstrate that multiphoton couplings can give rise to complex light-induced potential energy surfaces that govern molecular behavior. In the laser-induced dissociation of H2+, the simplest of molecules, we measure a strongly modulated angular distribution of protons which has escaped prior observation. Using two-color Floquet theory, we show that the modulations result from ultrafast dynamics on light-induced molecular potentials. These potentials are shaped by the amplitude, duration and phase of the dressing fields, allowing for manipulating the dissociation dynamics of small molecules.

Loading...
Thumbnail Image
Item

Signatures of Light-Induced Potential Energy Surfaces in H2+

2020, Kübel, M., Spanner, M., Dube, Z., Naumov, A. Yu, Vrakking, M.J.J., Corkum, P.B., Villeneuve, D.M., Staudte, A.

Using theory and Cold Target Recoil Ion Momentum Spectroscopy we find signatures of light-induced molecular potential energy surfaces in the 3-dimensional proton momentum distributions of dissociating H+2. © 2020 Journal of Physics: Conference Series. All rights reserved.

Loading...
Thumbnail Image
Item

Carrier-envelope phase-tagged imaging of the controlled electron acceleration from SiO 2 nanospheres in intense few-cycle laser fields

2012, Zherebtsov, S., Süßmann, F., Peltz, C., Plenge, J., Betsch, K.J., Znakovskaya, I., Alnaser, A.S., Johnson, N.G., Kübel, M., Horn, A., Mondes, V., Graf, C., Trushin, S.A., Azzeer, A., Vrakking, M.J.J., Paulus, G.G., Krausz, F., Rühl, E., Fennel, T., Kling, M.F.

Waveform-controlled light fields offer the possibility of manipulating ultrafast electronic processes on sub-cycle timescales. The optical lightwave control of the collective electron motion in nanostructured materials is key to the design of electronic devices operating at up to petahertz frequencies. We have studied the directional control of the electron emission from 95 nm diameter SiO 2 nanoparticles in few-cycle laser fields with a well-defined waveform. Projections of the three-dimensional (3D) electron momentum distributions were obtained via single-shot velocity-map imaging (VMI), where phase tagging allowed retrieving the laser waveform for each laser shot. The application of this technique allowed us to efficiently suppress background contributions in the data and to obtain very accurate information on the amplitude and phase of the waveform-dependent electron emission. The experimental data that are obtained for 4 fs pulses centered at 720 nm at different intensities in the range (1-4)×10 13Wcm -2 are compared to quasi-classical mean-field Monte-Carlo simulations. The model calculations identify electron backscattering from the nanoparticle surface in highly dynamical localized fields as the main process responsible for the energetic electron emission from the nanoparticles. The local field sensitivity of the electron emission observed in our studies can serve as a foundation for future research on propagation effects for larger particles and field-induced material changes at higher intensities.