Search Results

Now showing 1 - 8 of 8
Loading...
Thumbnail Image
Item

Mechanical performance and corrosion behaviour of Zr-based bulk metallic glass produced by selective laser melting

2020, Deng, L., Gebert, A., Zhang, L., Chen, H.Y., Gu, D.D., Kühn, U., Zimmermann, M., Kosiba, K., Pauly, S.

Nearly fully dense, glassy Zr52.5Cu17.9Ni14.6Al10Ti5 bulk specimens were fabricated by selective laser melting (SLM) and their behaviour during compressive loading, during wear testing and in a corrosive medium was investigated. Their performance was compared with as-cast material of the same composition. The additively manufactured samples exhibit a yield strength around 1700 MPa combined with a plastic strain of about 0.5% after yielding despite the residual porosity of 1.3%, which is distributed uniformly in the samples. The propagation of shear bands in the bulk metallic glass prepared by SLM was studied. The specific wear rate and the worn surfaces demonstrated that similar wear mechanisms are active in the SLM and the as-cast samples. Hence, manufacturing the glass in layers does not adversely affect the wear properties. The same holds for the corrosion tests, which were carried out in 0.01 M Na2SO4 and 0.1 M NaCl electrolyte. The anodic polarization curves of SLM samples and as-cast samples revealed a similar corrosion behaviour. However, the SLM samples have a slightly reduced susceptibility to pitting corrosion and exhibit an improved surface healing ability, which might be attributed to an improved homogeneity of the additively manufactured glass.

Loading...
Thumbnail Image
Item

Ab initio based study of finite-temperature structural, elastic and thermodynamic properties of FeTi

2014, Zhu, L.-F., Friák, M., Udyansky, A., Ma, D., Schlieter, A., Kühn, U., Eckert, J., Neugebauer, J.

We employ density functional theory (DFT) to calculate pressure dependences of selected thermodynamic, structural and elastic properties as well as electronic structure characteristics of equiatomic B2 FeTi. We predict ground-state single-crystalline Young's modulus and its two-dimensional counterpart, the area modulus, together with homogenized polycrystalline elastic parameters. Regarding the electronic structure of FeTi, we analyze the band structure and electronic density of states. Employing (i) an analytical dynamical matrix parametrized in terms of elastic constants and lattice parameters in combination with (ii) the quasiharmonic approximation we then obtained free energies, the thermal expansion coefficient, heat capacities at constant pressure and volume, as well as isothermal bulk moduli at finite temperatures. Experimental measurements of thermal expansion coefficient complement our theoretical investigation and confirm our theoretical predictions. It is worth mentioning that, as often detected in other intermetallics, some materials properties of FeTi strongly differ from the average of the corresponding values found in elemental Fe and Ti. These findings can have important implications for future materials design of new intermetallic materials.

Loading...
Thumbnail Image
Item

Glass-forming ability, phase formation and mechanical properties of glass-forming Cu-Hf-Zr alloys

2019, Kosiba, K., Song, K., Kühn, U., Wang, G., Pauly, S.

The influence of Hf additions on the glass-forming ability (GFA), phase formation and mechanical properties of Cu50HfxZr50-x (x = 2,5,10,20 at.%) alloys has been systematically investigated. We report on a distinct correlation between phase formation and GFA of Cu50Zr50-based alloys. Increasing additions of Hf reduce the thermal stability of the high-temperature B2 Cu(Hf,Zr) phase, while the thermal stability of the corresponding undercooled melt is enhanced. The GFA of these alloy series gradually raises up to 10 at.% Hf, whereas at 20 at.%Hf, the GFA is drastically lowered, since the B2 Cu(Hf,Zr) phase becomes unstable and the precipitation of the low-temperature equilibrium phases is favoured. This interrelation determines the microstructure and results in the formation of Cu-Hf-Zr-based bulk metallic glass composites. These composites not only show appreciable macroscopic plastic strain, but also high yield strength.

Loading...
Thumbnail Image
Item

Ti-Al composite wires with high specific strength

2011, Marr, T., Freudenberger, J., Seifert, D., Klauß, H., Romberg, J., Okulov, I., Scharnweber, J., Eschke, A., Oertel, C.-G., Skrotzki, W., Kühn, U., Eckert, J., Schultz, L.

An alternative deformation technique was applied to a composite made of titanium and an aluminium alloy in order to achieve severe plastic deformation. This involves accumulative swaging and bundling. Furthermore, it allows uniform deformation of a composite material while producing a wire which can be further used easily. Detailed analysis concerning the control of the deformation process, mesostructural and microstructural features and tensile testing was carried out on the as produced wires. A strong grain refinement to a grain size of 250–500 nm accompanied by a decrease in h111i fibre texture component and a change from low angle to high angle grain boundary characteristics is observed in the Al alloy. A strong increase in the mechanical properties in terms of ultimate tensile strength ranging from 600 to 930 MPa being equivalent to a specific strength of up to 223 MPa/g/cm3 was achieved.

Loading...
Thumbnail Image
Item

Production and characterization of brass-matrix composites reinforced with Ni59Zr20Ti16Si2Sn3 glassy particles

2012, Kim, J.Y., Scudino, S., Kühn, U., Kim, B.S., Lee, M.H., Eckert, J.

Brass-matrix composites reinforced with 40 and 60 vol.% of Ni59Zr20Ti16Si2Sn3 glassy particles were produced by powder metallurgy. The crystallization behavior and the temperature dependence of the viscosity of the glass reinforcement were studied in detail to select the proper sintering parameters in order to avoid crystallization of the glassy phase during consolidation. The brass-glass powder mixtures were prepared through manual blending as well as by ball milling to analyze the effect of the matrix ligament size on the mechanical properties of the composites. The powder mixtures were then consolidated into highly-dense bulk specimens at temperatures within the supercooled liquid region by hot pressing followed by hot extrusion. The preparation of the powder mixtures has a strong influence on the mechanical behavior of the composites. The strength increases from 500 MPa for pure brass to 740 and 925 MPa for the blended composites with 40 and 60vol.% of glass reinforcement, while the strength increases to 1,240 and 1,640 MPa for the corresponding composites produced by ball milling. Modeling of the mechanical properties indicates that this behavior is related to the reduced matrix ligament size characterizing the milled composites.

Loading...
Thumbnail Image
Item

Compositional complexity dependence of dislocation density and mechanical properties in high entropy alloy systems

2020, Thirathipviwat, P., Song, G., Bednarcik, J., Kühn, U., Gemming, T., Nielsch, K., Han, J.

This study focuses on a quantitative analysis of dislocation accumulation after cold plastic deformation and mechanical properties of FeNiCoCrMn and TiNbHfTaZr high entropy alloys (HEAs) which are single phase fcc and bcc solid solutions, respectively. In order to study the role of compositional complexity from unary to quinary compositions on dislocation accumulation and mechanical properties after plastic deformation, the single solid solution phase forming sub-alloys of the two HEAs were investigated. All studied samples revealed a large plastic deformability under cold-rotary swaging process by 85–90% area reduction without intermediate annealing. The dislocation density of all studied samples, determined by Williamson-Hall method on synchrotron X-ray diffraction patterns, were between 1014 - 1015 m−2 dependent on the alloy composition. The level of dislocation density after plastic deformation is not only affected by the number of constituent element but the lattice distortion and intrinsic properties in terms of stacking fault energy, modulus misfit, and melting point also impact the dislocation storage. The level of dislocation density determines the level of mechanical properties because of a resistance to dislocation motions. The hardness and yield compressive strength of the studied samples are proportional to the level of dislocation density.

Loading...
Thumbnail Image
Item

Processing metallic glasses by selective laser melting

2013, Pauly, S., Löber, L., Petters, R., Stoica, M., Scudino, S., Kühn, U., Eckert, J.

Metallic glasses and their descendants, the so-called bulk metallic glasses (BMGs), can be regarded as frozen liquids with a high resistance to crystallization. The lack of a conventional structure turns them into a material exhibiting near-theoretical strength, low Young's modulus and large elasticity. These unique mechanical properties can be only obtained when the metallic melts are rapidly cooled to bypass the nucleation and growth of crystals. Most of the commonly known and used processing routes, such as casting, melt spinning or gas atomization, have intrinsic limitations regarding the complexity and dimensions of the geometries. Here, it is shown that selective laser melting (SLM), which is usually used to process conventional metallic alloys and polymers, can be applied to implement complex geometries and components from an Fe-base metallic glass. This approach is in principle viable for a large variety of metallic alloys and paves the way for the novel synthesis of materials and the development of parts with advanced functional and structural properties without limitations in size and intricacy.

Loading...
Thumbnail Image
Item

Processing of intermetallic titanium aluminide wires

2013, Marr, T., Freudenberger, J., Kauffmann, A., Romberg, J., Okulov, I., Petters, R., Scharnweber, J., Eschke, A., Oertel, C.-G., Kühn, U., Eckert, J., Skrotzki, W., Schultz, L.

This study shows the possibility of processing titanium aluminide wires by cold deformation and annealing. An accumulative swaging and bundling technique is used to co-deform Ti and Al. Subsequently, a two step heat treatment is applied to form the desired intermetallics, which strongly depends on the ratio of Ti and Al in the final composite and therefore on the geometry of the starting composite. In a first step, the whole amount of Al is transformed to TiAl3 by Al diffusion into Ti. This involves the formation of 12% porosity. In a second step, the complete microstructure is transformed into the equilibrium state of γ-TiAl and TiAl3. Using this approach, it is possible to obtain various kinds of gradient materials, since there is an intrinsic concentration gradient installed due to the swaging and bundling technique, but the processing of pure γ-TiAl wires is possible as well.