Search Results

Now showing 1 - 10 of 16
Loading...
Thumbnail Image
Item

Correlation between the microstructures and the deformation mechanisms of CuZr-based bulk metallic glass composites

2013, Song, K.K., Pauly, S., Sun, B.A, Tan, J., Stoica, M., Kühn, U., Eckert, J.

The variation of the transformation-mediated deformation behavior with microstructural changes in CuZr-based bulk metallic glass composites is investigated. With increasing crystalline volume fraction, the deformation mechanism gradually changes from a shear-banding dominated process as evidenced by a chaotic serrated flow behavior, to being governed by a martensitic transformation with a pronounced elastic-plastic stage, resulting in different plastic deformations evolving into a self-organized critical state characterized by the power-law distribution of shear avalanches. This is reflected in the stress-strain curves by a single-to-"double"-to-"triple"- double yielding transition and by different mechanical properties with different serrated flow characteristics, which are interpreted based on the microstructural evolutions and a fundamental energy theorem. Our results can assist in understanding deformation behaviors for high-performance metastable alloys.

Loading...
Thumbnail Image
Item

Processing metallic glasses by selective laser melting

2013, Pauly, S., Löber, L., Petters, R., Stoica, M., Scudino, S., Kühn, U., Eckert, J.

Metallic glasses and their descendants, the so-called bulk metallic glasses (BMGs), can be regarded as frozen liquids with a high resistance to crystallization. The lack of a conventional structure turns them into a material exhibiting near-theoretical strength, low Young's modulus and large elasticity. These unique mechanical properties can be only obtained when the metallic melts are rapidly cooled to bypass the nucleation and growth of crystals. Most of the commonly known and used processing routes, such as casting, melt spinning or gas atomization, have intrinsic limitations regarding the complexity and dimensions of the geometries. Here, it is shown that selective laser melting (SLM), which is usually used to process conventional metallic alloys and polymers, can be applied to implement complex geometries and components from an Fe-base metallic glass. This approach is in principle viable for a large variety of metallic alloys and paves the way for the novel synthesis of materials and the development of parts with advanced functional and structural properties without limitations in size and intricacy.

Loading...
Thumbnail Image
Item

Ab initio based study of finite-temperature structural, elastic and thermodynamic properties of FeTi

2014, Zhu, L.-F., Friák, M., Udyansky, A., Ma, D., Schlieter, A., Kühn, U., Eckert, J., Neugebauer, J.

We employ density functional theory (DFT) to calculate pressure dependences of selected thermodynamic, structural and elastic properties as well as electronic structure characteristics of equiatomic B2 FeTi. We predict ground-state single-crystalline Young's modulus and its two-dimensional counterpart, the area modulus, together with homogenized polycrystalline elastic parameters. Regarding the electronic structure of FeTi, we analyze the band structure and electronic density of states. Employing (i) an analytical dynamical matrix parametrized in terms of elastic constants and lattice parameters in combination with (ii) the quasiharmonic approximation we then obtained free energies, the thermal expansion coefficient, heat capacities at constant pressure and volume, as well as isothermal bulk moduli at finite temperatures. Experimental measurements of thermal expansion coefficient complement our theoretical investigation and confirm our theoretical predictions. It is worth mentioning that, as often detected in other intermetallics, some materials properties of FeTi strongly differ from the average of the corresponding values found in elemental Fe and Ti. These findings can have important implications for future materials design of new intermetallic materials.

Loading...
Thumbnail Image
Item

Serrated flow of CuZr-based bulk metallic glasses probed by nanoindentation: Role of the activation barrier, size and distribution of shear transformation zones

2017, Limbach, R., Kosiba, K., Pauly, S., Kühn, U., Wondraczek, L.

We report on the effect of Al and Co alloying in vitreous Cu50Zr50 on local deformation and serrated flow as a model for relating the size and localization of shear transformation zones (STZ) to Poisson ratio and strain-rate sensitivity of metallic glasses. Alloying with Al results in significant variations in mechanical performance, in particular, in Young's modulus, hardness and strain-rate sensitivity. Increasing strain-rate sensitivity with increasing degree of alloying indicates a reduced tendency for shear localization. In parallel, a gradual transition from inhomogeneous to homogeneous plastic flow is observed. Using a statistical analysis of the shear stress associated with the initiation of the first pop-in in the load-displacement curve during spherical indentation, the activation volume for plastic flow at the onset of yielding is reported. This analysis is employed for experimental evaluation of the compositional dependence of activation barrier, size and distribution of STZs. It is demonstrated that the STZ size does not change significantly upon Al alloying and encompasses a local volume of around 22–24 atoms. However, the barrier energy density for the initiation of a single STZ progressively increases. The broader distribution of STZs impedes their accumulation into larger-size flow units, leading to a lower number and reduced size of serrations in the load-displacement curve. On the contrary, lower barrier energy densities enable a larger quantity of STZs to be activated simultaneously. These STZs can easily percolate into large flow units, promoting plastic flow through their interaction. We employ Poisson's ratio as an indicator for plasticity to shown that this interpretation can be transferred to other types of metallic glasses. That is, larger flow units were found for metallic glasses with higher Poisson ratio and more pronounced plasticity, while the flow units in alloys with very low Poisson ratio and high brittleness are significantly reduced in size and more homogeneously distributed throughout the material.

Loading...
Thumbnail Image
Item

Mechanical performance and corrosion behaviour of Zr-based bulk metallic glass produced by selective laser melting

2020, Deng, L., Gebert, A., Zhang, L., Chen, H.Y., Gu, D.D., Kühn, U., Zimmermann, M., Kosiba, K., Pauly, S.

Nearly fully dense, glassy Zr52.5Cu17.9Ni14.6Al10Ti5 bulk specimens were fabricated by selective laser melting (SLM) and their behaviour during compressive loading, during wear testing and in a corrosive medium was investigated. Their performance was compared with as-cast material of the same composition. The additively manufactured samples exhibit a yield strength around 1700 MPa combined with a plastic strain of about 0.5% after yielding despite the residual porosity of 1.3%, which is distributed uniformly in the samples. The propagation of shear bands in the bulk metallic glass prepared by SLM was studied. The specific wear rate and the worn surfaces demonstrated that similar wear mechanisms are active in the SLM and the as-cast samples. Hence, manufacturing the glass in layers does not adversely affect the wear properties. The same holds for the corrosion tests, which were carried out in 0.01 M Na2SO4 and 0.1 M NaCl electrolyte. The anodic polarization curves of SLM samples and as-cast samples revealed a similar corrosion behaviour. However, the SLM samples have a slightly reduced susceptibility to pitting corrosion and exhibit an improved surface healing ability, which might be attributed to an improved homogeneity of the additively manufactured glass.

Loading...
Thumbnail Image
Item

Quasi-static and dynamic deformation behaviour of Zr-based bulk metallic glass

2013, Nekouie, V., Kühn, U., Roy, A., Silberschmidt, V.

Nano- and micro-indentation studies were carried out to characterise a plasticity mechanism through the evolution of localised shear bands that drive material's deformation at sub-micron length scale. Initial deformation of Zr-based bulk metallic glass (BMG) was investigated with nanoindentation tests using a spherical indenter. The indentation cycle reflects an elastic deformation with the yielding load of approx. 3 mN. For designed cycling indentation, hardening and softening phenomena were observed in nano- and micro-indentations, respectively. High-precision dynamic mechanical relaxation measurements were performed using a Dynamic Mechanical Analyzer (DMA), on decreasing frequency from 160 Hz to 0.1 Hz. A mechanical response of the BMG surface to a concentrated impact load was also studied. The obtained results indicated that the studied Zr-based BMG behaved as an elastic-perfectly plastic material at macroscale with discrete plasticity events at smaller length scales.

Loading...
Thumbnail Image
Item

Production and characterization of brass-matrix composites reinforced with Ni59Zr20Ti16Si2Sn3 glassy particles

2012, Kim, J.Y., Scudino, S., Kühn, U., Kim, B.S., Lee, M.H., Eckert, J.

Brass-matrix composites reinforced with 40 and 60 vol.% of Ni59Zr20Ti16Si2Sn3 glassy particles were produced by powder metallurgy. The crystallization behavior and the temperature dependence of the viscosity of the glass reinforcement were studied in detail to select the proper sintering parameters in order to avoid crystallization of the glassy phase during consolidation. The brass-glass powder mixtures were prepared through manual blending as well as by ball milling to analyze the effect of the matrix ligament size on the mechanical properties of the composites. The powder mixtures were then consolidated into highly-dense bulk specimens at temperatures within the supercooled liquid region by hot pressing followed by hot extrusion. The preparation of the powder mixtures has a strong influence on the mechanical behavior of the composites. The strength increases from 500 MPa for pure brass to 740 and 925 MPa for the blended composites with 40 and 60vol.% of glass reinforcement, while the strength increases to 1,240 and 1,640 MPa for the corresponding composites produced by ball milling. Modeling of the mechanical properties indicates that this behavior is related to the reduced matrix ligament size characterizing the milled composites.

Loading...
Thumbnail Image
Item

Ti-Al composite wires with high specific strength

2011, Marr, T., Freudenberger, J., Seifert, D., Klauß, H., Romberg, J., Okulov, I., Scharnweber, J., Eschke, A., Oertel, C.-G., Skrotzki, W., Kühn, U., Eckert, J., Schultz, L.

An alternative deformation technique was applied to a composite made of titanium and an aluminium alloy in order to achieve severe plastic deformation. This involves accumulative swaging and bundling. Furthermore, it allows uniform deformation of a composite material while producing a wire which can be further used easily. Detailed analysis concerning the control of the deformation process, mesostructural and microstructural features and tensile testing was carried out on the as produced wires. A strong grain refinement to a grain size of 250–500 nm accompanied by a decrease in h111i fibre texture component and a change from low angle to high angle grain boundary characteristics is observed in the Al alloy. A strong increase in the mechanical properties in terms of ultimate tensile strength ranging from 600 to 930 MPa being equivalent to a specific strength of up to 223 MPa/g/cm3 was achieved.

Loading...
Thumbnail Image
Item

Guiding shear bands in bulk metallic glasses using stress fields : A perspective from the activation of flow units

2020, Kosiba, K., Scudino, S., Bednarcik, J., Bian, J., Liu, G., Kühn, U., Pauly, S.

Controlling shear band propagation is the key to obtain ductile metallic glasses. Here, we use a residual stress field to vary the direction of shear band propagation. We ascribe this behavior to the effect of the stress field on the activation of shear transformation zones (STZs) along their characteristic direction and we quantify this contribution to the energy of the process. Because of the progressively adverse orientation of the stress field, the energy stored as shear in the STZ decreases to a level where shear band propagation at alternative angles becomes energetically more favorable. © 2020 authors.

Loading...
Thumbnail Image
Item

Processing of intermetallic titanium aluminide wires

2013, Marr, T., Freudenberger, J., Kauffmann, A., Romberg, J., Okulov, I., Petters, R., Scharnweber, J., Eschke, A., Oertel, C.-G., Kühn, U., Eckert, J., Skrotzki, W., Schultz, L.

This study shows the possibility of processing titanium aluminide wires by cold deformation and annealing. An accumulative swaging and bundling technique is used to co-deform Ti and Al. Subsequently, a two step heat treatment is applied to form the desired intermetallics, which strongly depends on the ratio of Ti and Al in the final composite and therefore on the geometry of the starting composite. In a first step, the whole amount of Al is transformed to TiAl3 by Al diffusion into Ti. This involves the formation of 12% porosity. In a second step, the complete microstructure is transformed into the equilibrium state of γ-TiAl and TiAl3. Using this approach, it is possible to obtain various kinds of gradient materials, since there is an intrinsic concentration gradient installed due to the swaging and bundling technique, but the processing of pure γ-TiAl wires is possible as well.