Search Results

Now showing 1 - 2 of 2
  • Item
    Approach to Estimate the Phase Formation and the Mechanical Properties of Alloys Processed by Laser Powder Bed Fusion via Casting
    (Basel : MDPI, 2022) Kühn, Uta; Sander, Jan; Gabrysiak, Katharina Nicole; Giebeler, Lars; Kosiba, Konrad; Pilz, Stefan; Neufeld, Kai; Boehm, Anne Veronika; Hufenbach, Julia Kristin
    A high-performance tool steel with the nominal composition Fe85Cr4Mo8V2C1 (wt%) was processed by three different manufacturing techniques with rising cooling rates: conventional gravity casting, centrifugal casting and an additive manufacturing process, using laser powder bed fusion (LPBF). The resulting material of all processing routes reveals a microstructure, which is composed of martensite, austenite and carbides. However, comparing the size, the morphology and the weight fraction of the present phases, a significant difference of the gravity cast samples is evident, whereas the centrifugal cast material and the LPBF samples show certain commonalities leading finally to similar mechanical properties. This provides the opportunity to roughly estimate the mechanical properties of the material fabricated by LPBF. The major benefit arises from the required small material quantity and the low resources for the preparation of samples by centrifugal casting in comparison to the additive manufacturing process. Concluding, the present findings demonstrate the high attractiveness of centrifugal casting for the effective material screening and hence development of novel alloys adapted to LPBF-processing.
  • Item
    Selective laser melting of Ti-45Nb alloy
    (Basel : MDPI, 2015) Schwab, Holger; Prashanth, Konda Gokuldoss; Löber, Lukas; Kühn, Uta; Eckert, Jürgen
    Ti-45Nb is one of the potential alloys that can be applied for biomedical applications as implants due to its low Young’s modulus. Ti-45Nb (wt.%) gas atomized powders were used to produce bulk samples by selective laser melting with three different parameter sets (energy inputs). A β-phase microstructure consisting of elliptical grains with an enriched edge of titanium was observed by scanning electron microscopy and X-ray diffraction studies. The mechanical properties of these samples were evaluated using hardness and compression tests, which suggested that the strength of the samples increases with increasing energy input within the range considered.