Search Results

Now showing 1 - 4 of 4
  • Item
    Synthesis of High Crystalline TiO2 Nanoparticles on a Polymer Membrane to Degrade Pollutants from Water
    (Basel : MDPI, 2018-9-5) Fischer, Kristina; Schulz, Paulina; Atanasov, Igor; Abdul Latif, Amira; Thomas, Isabell; Kühnert, Mathias; Prager, Andrea; Griebel, Jan; Schulze, Agnes
    Titanium dioxide (TiO2) is described as an established material to remove pollutants from water. However, TiO2 is still not applied on a large scale due to issues concerning, for example, the form of use or low photocatalytic activity. We present an easily upscalable method to synthesize high active TiO2 nanoparticles on a polyethersulfone microfiltration membrane to remove pollutants in a continuous way. For this purpose, titanium(IV) isopropoxide was mixed with water and hydrochloric acid and treated up to 210 °C. After cooling, the membrane was simply dip-coated into the TiO2 nanoparticle dispersion. Standard characterization was undertaken (i.e., X-ray powder diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, water permeance, contact angle). Degradation of carbamazepine and methylene blue was executed. By increasing synthesis temperature crystallinity and photocatalytic activity elevates. Both ultrasound modification of nanoparticles and membrane pre-modification with carboxyl groups led to fine distribution of nanoparticles. The ultrasound-treated nanoparticles gave the highest photocatalytic activity in degrading carbamazepine and showed no decrease in degradation after nine times of repetition. The TiO2 nanoparticles were strongly bound to the membrane. Photocatalytic TiO2 nanoparticles with high activity were synthesized. The innovative method enables a fast and easy nanoparticle production, which could enable the use in large-scale water cleaning.
  • Item
    Effect of morphology on the photoelectrochemical activity of TiO2 self-organized nanotube arrays
    (Basel : MDPI, 2020) Ennaceri, Houda; Fischer, Kristina; Hanus, Kevin; Chemseddine, Abdelkrim; Prager, Andrea; Griebel, Jan; Kühnert, Mathias; Schulze, Agnes; Abel, Bernd
    In the present work, highly ordered titanium dioxide (TiO2) nanotube anodes were grown using a rapid anodization process. The photoelectrochemical performances of these electrodes strongly depend on the anodization conditions. Parameters such as electrolyte composition, anodization potential and anodization time are shown to affect the geometrical parameters of TiO2 nanotubes. The optimal anodization parameters are determined by photocurrent measurements, linear sweep voltammetry and electrochemical impedance spectroscopy. The thickness of the tube wall and its homogeneity is shown to strongly depend on the anodization potential, and the formation mechanism is discussed. This study permits the optimization of the photocurrent density and contributes to further improvement of the photoelectrochemical water-splitting performance of TiO2 nanotube photoelectrodes. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Controlled electron-beam synthesis of transparent hydrogels for drug delivery applications
    (Basel : MDPI, 2019) Glass, Sarah; Kühnert, Mathias; Abel, Bernd; Schulze, Agnes
    In this study, we highlight hydrogels prepared by electron-beam polymerization. In general, the electron-beam-polymerized hydrogels showed improved mechanical and optical transmittances compared to the conventional UV-cured hydrogels. They were more elastic and had a higher crosslinking density. Additionally, they were transparent over a broader wavelength range. The dependence of the mechanical and optical properties of the hydrogels on the number of single differential and total irradiation doses was analyzed in detail. The hydrogels were prepared for usage as a drug delivery material with methylene blue as a drug model. In the first set of experiments, methylene blue was loaded reversibly after the hydrogel synthesis. Electron-beam-polymerized hydrogels incorporated twice as much methylene blue compared to the UV-polymerized gels. Furthermore, the release of the model drug was found to depend on the crosslinking degree of the hydrogels. In addition, electron-beam polymerization enabled the irreversible binding of the drug molecules if they were mixed with monomers before polymerization.
  • Item
    Reduction of biofouling of a microfiltration membrane using amide functionalities-Hydrophilization without changes in morphology
    (Basel : MDPI, 2020) Breite, Daniel; Went, Marco; Prager, Andrea; Kühnert, Mathias; Schulze, Agnes
    A major goal of membrane science is the improvement of the membrane performance and the reduction of fouling effects, which occur during most aqueous filtration applications. Increasing the surface hydrophilicity can improve the membrane performance (in case of aqueous media) and decelerates membrane fouling. In this study, a PES microfiltration membrane (14,600 L m−2 h−1 bar−1) was hydrophilized using a hydrophilic surface coating based on amide functionalities, converting the hydrophobic membrane surface (water contact angle, WCA: ~90°) into an extremely hydrophilic one (WCA: ~30°). The amide layer was created by first immobilizing piperazine to the membrane surface via electron beam irradiation. Subsequently, a reaction with 1,3,5-benzenetricarbonyl trichloride (TMC) was applied to generate an amide structure. The presented approach resulted in a hydrophilic membrane surface, while maintaining permeance of the membrane without pore blocking. All membranes were investigated regarding their permeance, porosity, average pore size, morphology (SEM), chemical composition (XPS), and wettability. Soxhlet extraction was carried out to demonstrate the stability of the applied coating. The improvement of the modified membranes was demonstrated using dead-end filtration of algae solutions. After three fouling cycles, about 60% of the initial permeance remain for the modified membranes, while only ~25% remain for the reference.