Search Results

Now showing 1 - 2 of 2
  • Item
    Numerical simulations of mixing conditions and aerosol dynamics in the CERN CLOUD chamber
    (München : European Geopyhsical Union, 2012) Voigtländer, J.; Duplissy, J.; Rondo, L.; Kürten, A.; Stratmann, F.
    To study the effect of galactic cosmic rays on aerosols and clouds, the Cosmics Leaving OUtdoor Droplets (CLOUD) project was established. Experiments are carried out at a 26.1 m3 tank at CERN (Switzerland). In the experiments, the effect of ionizing radiation on H2SO4 particle formation and growth is investigated. To evaluate the experimental configuration, the experiment was simulated using a coupled multidimensional computational fluid dynamics (CFD) – particle model. In the model the coupled fields of gas/vapor species, temperature, flow velocity and particle properties were computed to investigate mixing state and mixing times of the CLOUD tank's contents. Simulation results show that a 1-fan configuration, as used in first experiments, may not be sufficient to ensure a homogeneously mixed chamber. To mix the tank properly, two fans and sufficiently high fan speeds are necessary. The 1/e response times for instantaneous changes of wall temperature and saturation ratio were found to be in the order of few minutes. Particle nucleation and growth was also simulated and particle number size distribution properties of the freshly nucleated particles (particle number, mean size, standard deviation of the assumed log-normal distribution) were found to be distributed over the tank's volume similar to the gas species.
  • Item
    Experimental investigation of ion-ion recombination under atmospheric conditions
    (München : European Geopyhsical Union, 2015) Franchin, A.; Ehrhart, S.; Leppä, J.; Nieminen, T.; Gagné, S.; Schobesberger, S.; Wimmer, D.; Duplissy, J.; Riccobono, F.; Dunne, E.M.; Rondo, L.; Downard, A.; Bianchi, F.; Kupc, A.; Tsagkogeorgas, G.; Lehtipalo, K.; Manninen, H.E.; Almeida, J.; Amorim, A.; Wagner, P.E.; Hansel, A.; Kirkby, J.; Le Rille, O.; Kürten, A.; Donahue, N.M.; Makhmutov, V.; Mathot, S.; Metzger, A.; Petäjä, T.; Schnitzhofer, R.; Sipilä, M.; Stozhkov, Y.; Tomé, A.; Kerminen, V.-M.; Carslaw, K.; Curtius, J.; Baltensperger, U.; Kulmala, M.
    We present the results of laboratory measurements of the ion–ion recombination coefficient at different temperatures, relative humidities and concentrations of ozone and sulfur dioxide. The experiments were carried out using the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at CERN, the walls of which are made of conductive material, making it possible to measure small ions. We produced ions in the chamber using a 3.5 GeV c−1 beam of positively charged pions (π+) generated by the CERN Proton Synchrotron (PS). When the PS was switched off, galactic cosmic rays were the only ionization source in the chamber. The range of the ion production rate varied from 2 to 100 cm−3 s−1, covering the typical range of ionization throughout the troposphere. The temperature ranged from −55 to 20 °C, the relative humidity (RH) from 0 to 70 %, the SO2 concentration from 0 to 40 ppb, and the ozone concentration from 200 to 700 ppb. The best agreement of the retrieved ion–ion recombination coefficient with the commonly used literature value of 1.6 × 10−6 cm3 s−1 was found at a temperature of 5 °C and a RH of 40 % (1.5 ± 0.6) × 10−6 cm3 s−1. At 20 °C and 40 % RH, the retrieved ion–ion recombination coefficient was instead (2.3 ± 0.7) × 10−6 cm3 s−1. We observed no dependency of the ion–ion recombination coefficient on ozone concentration and a weak variation with sulfur dioxide concentration. However, we observed a more than fourfold increase in the ion–ion recombination coefficient with decreasing temperature. We compared our results with three different models and found an overall agreement for temperatures above 0 °C, but a disagreement at lower temperatures. We observed a strong increase in the recombination coefficient for decreasing relative humidities, which has not been reported previously.