Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview

2016, Riahi, Keywan, van Vuuren, Detlef P., Kriegler, Elmar, Edmonds, Jae, O’Neill, Brian C., Fujimori, Shinichiro, Bauer, Nico, Calvin, Katherine, Dellink, Rob, Fricko, Oliver, Lutz, Wolfgang, Popp, Alexander, Crespo Cuaresma, Jesus, KC, Samir, Leimbach, Marian, Jiang, Leiwen, Kram, Tom, Rao, Shilpa, Emmerling, Johannes, Ebi, Kristie, Hasegawa, Tomoko, Havlik, Petr, Humpenöder, Florian, Aleluia Da Silva, Lara, Smith, Steve, Stehfest, Elke, Bosetti, Valentina, Eom, Jiyong, Gernaat, David, Masui, Toshihiko, Rogelj, Joeri, Strefler, Jessica, Drouet, Laurent, Krey, Volker, Luderer, Gunnar, Harmsen, Mathijs, Takahashi, Kiyoshi, Baumstark, Lavinia, Doelman, Jonathan C., Kainuma, Mikiko, Klimont, Zbigniew, Marangoni, Giacomo, Lotze-Campen, Hermann, Obersteiner, Michael, Tabeau, Andrzej, Tavoni, Massimo

This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).

Loading...
Thumbnail Image
Item

The representative concentration pathways: An overview

2011, van Vuuren, Detlef P., Edmonds, Jae, Kainuma, Mikiko, Riahi, Keywan, Thomson, Allison, Hibbard, Kathy, Hurtt, George C., Kram, Tom, Krey, Volker, Lamarque, Jean-Francois, Masui, Toshihiko, Meinshausen, Malte, Nakicenovic, Nebojsa, Smith, Steven J., Rose, Steven K.

This paper summarizes the development process and main characteristics of the Representative Concentration Pathways (RCPs), a set of four new pathways developed for the climate modeling community as a basis for long-term and near-term modeling experiments. The four RCPs together span the range of year 2100 radiative forcing values found in the open literature, i.e. from 2.6 to 8.5 W/m2. The RCPs are the product of an innovative collaboration between integrated assessment modelers, climate modelers, terrestrial ecosystem modelers and emission inventory experts. The resulting product forms a comprehensive data set with high spatial and sectoral resolutions for the period extending to 2100. Land use and emissions of air pollutants and greenhouse gases are reported mostly at a 0.5 × 0.5 degree spatial resolution, with air pollutants also provided per sector (for well-mixed gases, a coarser resolution is used). The underlying integrated assessment model outputs for land use, atmospheric emissions and concentration data were harmonized across models and scenarios to ensure consistency with historical observations while preserving individual scenario trends. For most variables, the RCPs cover a wide range of the existing literature. The RCPs are supplemented with extensions (Extended Concentration Pathways, ECPs), which allow climate modeling experiments through the year 2300. The RCPs are an important development in climate research and provide a potential foundation for further research and assessment, including emissions mitigation and impact analysis.

Loading...
Thumbnail Image
Item

Locked into Copenhagen pledges - Implications of short-term emission targets for the cost and feasibility of long-term climate goals

2013, Riahi, Keywan, Kriegler, Elmar, Johnson, Nils, Bertram, Christoph, den Elzen, Michel, Eom, Jiyong, Schaeffer, Michiel, Edmonds, Jae, Isaac, Morna, Krey, Volker, Longden, Thomas, Luderer, Gunnar, Méjean, Aurélie, McCollum, David L., Mima, Silvana, Turton, Hal, van Vuuren, Detlef P., Wada, Kenichi, Bosetti, Valentina, Capros, Pantelis, Criqui, Patrick, Hamdi-Cherif, Meriem, Kainuma, Mikiko, Edenhofer, Ottmar

This paper provides an overview of the AMPERE modeling comparison project with focus on the implications of near-term policies for the costs and attainability of long-term climate objectives. Nine modeling teams participated in the project to explore the consequences of global emissions following the proposed policy stringency of the national pledges from the Copenhagen Accord and Cancún Agreements to 2030. Specific features compared to earlier assessments are the explicit consideration of near-term 2030 emission targets as well as the systematic sensitivity analysis for the availability and potential of mitigation technologies. Our estimates show that a 2030 mitigation effort comparable to the pledges would result in a further “lock-in” of the energy system into fossil fuels and thus impede the required energy transformation to reach low greenhouse-gas stabilization levels (450 ppm CO2e). Major implications include significant increases in mitigation costs, increased risk that low stabilization targets become unattainable, and reduced chances of staying below the proposed temperature change target of 2 °C in case of overshoot. With respect to technologies, we find that following the pledge pathways to 2030 would narrow policy choices, and increases the risks that some currently optional technologies, such as carbon capture and storage (CCS) or the large-scale deployment of bioenergy, will become “a must” by 2030.