Search Results

Now showing 1 - 2 of 2
  • Item
    Advanced Approach for Radiation Transport Description in 3D Collisional-radiative Models
    (Praha : Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Physics, 2017) Kalanov, D.; Golubovskii, Y.B.; Uhrlandt, D.; Gortschakow, S.
    The description of radiation transport phenomena in the frames of collisional-radiative models requires the solution of Holstein-Biberman equation. An advanced solutuion method for 3D plasma obejcts is proposed. The method is applicable for various line contours in a wide range of absorption coefficients. Developed approach is based on discretization of the arbitrary plasma volume on a Cartesian voxel grid. Transport of photons between the cells is computed using the ray traversal algorithm by Amanatides [1]. Solution of the particle balance equations with computed in advance radiative transfer matrix is demonstrated for various typical arc shapes, like e.g. free-burning arc and cylindric arc. Results are compared with corresponding calculations using previously developed approaches. As the method is suited for finite geometries and allows for a strict solution of the radiation transport equation, applicability ranges of previous approximations can be specified.
  • Item
    Influence of resonance radiation transport on chemical equilibrium in an argon arc
    (Praha : Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Physics, 2019) Gortschakow, S.; Kalanov, D.; Golubovskii, Yu.
    Deviations from chemical equilibrium in argon arc plasma are analysed by means of collisional-radiative model. Corresponding comprehensive kinetic scheme has been developed and applied form study of free-burning arc at the conditions typical for welding applications. While the natural lifetime have been used for radiation emitted from highly excited argon states, the resonance radiation was described taking into account the radiation transport effects. Resulting spatial distributions of excited argon atoms are compared for the cases of LTE and two-temperature plasma using different approaches for the description of the resonance radiation transport.