Search Results

Now showing 1 - 2 of 2
  • Item
    Diode-Pumped Laser Operation of Tb3+:LiLuF4 in the Green and Yellow Spectral Range
    (Weinheim : Wiley VCH, 2020) Castellano-Hernández, Elena; Kalusniak, Sascha; Metz, Philip W.; Kränkel, Christian
    Here, a diode-pumped laser based on trivalent terbium (Tb3+) as the active ion is reported. Optical pumping of a Tb3+-doped lithium-lutetium-fluoride (LiLuF4) crystal with up to 200 mW from a diode laser emitting at a wavelength of 488.2 nm enables continuous-wave lasing directly in the green and in the yellow. At an emission wavelength of 542 nm, the laser reaches an output power of up to 43.8 mW with a high slope efficiency of 52% with respect to the absorbed pump power. The yellow laser at 587 nm exhibits a slope efficiency of 22% and the output power of 13.8 mW is only limited by the available pump power. Laser thresholds as low as 14 and 27 mW of absorbed pump power are observed for the green and yellow, respectively. The investigations toward further optimization of the laser performance reveal that highly Tb3+-doped materials are suitable for compact, efficient, and affordable diode-pumped solid-state lasers with direct emission in the visible spectral range. These results are of high relevance, as in particular for the yellow spectral range such systems are currently not available. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Spectroscopy and 2.1 µm laser operation of Czochralski-grown Tm3+:YScO3 crystals
    (Washington, DC : Soc., 2022) Suzuki, Anna; Kalusniak, Sascha; Tanaka, Hiroki; Brützam, Mario; Ganschow, Steffen; Tokurakawa, Masaki; Kränkel, Christian
    We report on growth, temperature-dependent spectroscopy, and laser experiments of Tm3+-doped YScO3 mixed sesquioxide crystals. For the first time, cm3-scale laser quality Tm3+:YScO3 crystals with 2.2 at.% and 3.1 at.% doping levels were grown by the Czochralski method from iridium crucibles. We reveal that the structural disorder in the mixed crystals allows for broad and smooth spectral features even at cryogenic temperatures. We obtained the first continuous wave laser operation in this material at wavelengths around 2100 nm using a laser diode emitting at 780 nm as a pump source. A maximum slope efficiency of 45% was achieved using a Tm3 + (3.1 at.%):YScO3 crystal. Our findings demonstrate the high potential of Tm3+-doped mixed sesquioxides for efficient ultrafast pulse generation in the 2.1 µm range.