Search Results

Now showing 1 - 3 of 3
  • Item
    Bioinspired pressure actuated adhesive system
    (Saarbrücken : Leibniz-Institut für Neue Materialien, 2011) Paretkar, Dadhichi R.; Kamperman, Marleen; Schneider, Andreas S.; Arzt, Eduard
    We developed a dry snythetic adhesive system inspired by gecko feet that can switch reversibly from adhesion to non-adhesion with applied pressure as external stimulus. Micropatterned polydimethylsiloxane (PDMS) surfaces with pillars of 30 µm length and 10 µm diameter were fabricated using photolithography and moulding. Adhesion properties were determined with a flat probe as a function of preload. For low and moderate applied compressive preloads, measured adhesion was 7.5 times higher on the patterned surfaces than on flat controls whereas for high preloads adhesion dropped to very low values. In situ imaging showed that the increased preload caused the pillars to deform by bending and/or buckling and to lose their adhesive contact. The elasticity of PDMS aids the pillar recovery to the upright position upon removal of preload enabling repeatability of the switch. Such systems have promising properties e.g. for industrial pick-and-carry operations.
  • Item
    Tuning the Interactions in Multiresponsive Complex Coacervate-Based Underwater Adhesives
    (Basel : Molecular Diversity Preservation International, 2020) Dompé, Marco; Cedano-Serrano, Francisco J.; Vahdati, Mehdi; Sidoli, Ugo; Heckert, Olaf; Synytska, Alla; Hourdet, Dominique; Creton, Costantino; van der Gucht, Jasper; Kodger, Thomas; Kamperman, Marleen
    In this work, we report the systematic investigation of a multiresponsive complex coacervate-based underwater adhesive, obtained by combining polyelectrolyte domains and thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) units. This material exhibits a transition from liquid to solid but, differently from most reactive glues, is completely held together by non-covalent interactions, i.e., electrostatic and hydrophobic. Because the solidification results in a kinetically trapped morphology, the final mechanical properties strongly depend on the preparation conditions and on the surrounding environment. A systematic study is performed to assess the effect of ionic strength and of PNIPAM content on the thermal, rheological and adhesive properties. This study enables the optimization of polymer composition and environmental conditions for this underwater adhesive system. The best performance with a work of adhesion of 6.5 J/m2 was found for the complex coacervates prepared at high ionic strength (0.75 M NaCl) and at an optimal PNIPAM content around 30% mol/mol. The high ionic strength enables injectability, while the hydrated PNIPAM domains provide additional dissipation, without softening the material so much that it becomes too weak to resist detaching stress. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    "Gecko-Workshop 2010" - INM initiates new worldwide conference series
    (Saarbrücken : Leibniz-Institut für Neue Materialien, 2011) Kamperman, Marleen; Arzt, Eduard
    In July 2010, scientists from all over the world gathered at INM to discuss gecko inspired adhesion at a workshop entitled "Bioinspired adhesion: from geckos to new products". The talks covered a range of current issues, including natural attachment systems, developments in artificial gecko-mimics, advances in mechanical models and possible products. This was the first dedicated workshop on this topic. The attendees unanimously agreed to create an international workshop series based on the INM example.