Search Results

Now showing 1 - 10 of 17
  • Item
    Thermal IR radiative properties of mixed mineral dust and biomass aerosol during SAMUM-2
    (Milton Park : Taylor & Francis, 2011) Köhler, Claas H.; Trautmann, Thomas; Lindermeir, Erwin; Vreeling, Willem; Lieke, Kirsten; Kandler, Konrad; Weinzierl, Bernadett; Groß, Silke; Tesche, Matthias; Wendisch, Manfred
    Ground-based high spectral resolution measurements of downwelling radiances from 800 to 1200 cm−1 were conducted between 20 January and 6 February 2008 within the scope of the SAMUM-2 field experiment. We infer the spectral signature of mixed biomass burning/mineral dust aerosols at the surface from these measurements and at top of the atmosphere from IASI observations. In a case study for a day characterized by the presence of high loads of both dust and biomass we attempt a closure with radiative transfer simulations assuming spherical particles. A detailed sensitivity analysis is performed to investigate the effect of uncertainties in the measurements ingested into the simulation on the simulated radiances. Distinct deviations between modelled and observed radiances are limited to a spectral region characterized by resonance bands in the refractive index. A comparison with results obtained during recent laboratory studies and field experiments reveals, that the deviations could be caused by the aerosol particles’ non-sphericity, although an unequivocal discrimination from measurement uncertainties is not possible. Based on radiative transfer simulations we estimate the aerosol’s direct radiative effect in the atmospheric window region to be 8 W m−2 at the surface and 1 W m−2 at top of the atmosphere.
  • Item
    Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal model particles
    (Milton Park : Taylor & Francis, 2017) Otto, Sebastian; Bierwirth, Eike; Weinzierl, Bernadett; Kandler, Konrad; Esselborn, Michael; Tesche, Matthias; Schladitz, Alexander; Wendisch, Manfred; Trautmann, Thomas
    The solar optical properties of Saharan mineral dust observed during the Saharan Mineral Dust Experiment (SAMUM) were explored based on measured size-number distributions and chemical composition. The size-resolved complex refractive index of the dust was derived with real parts of 1.51–1.55 and imaginary parts of 0.0008–0.006 at 550 nm wavelength. At this spectral range a single scattering albedo ωo and an asymmetry parameter g of about 0.8 were derived. These values were largely determined by the presence of coarse particles. Backscatter coefficients and lidar ratios calculated with Mie theory (spherical particles) were not found to be in agreement with independently measured lidar data. Obviously the measured Saharan mineral dust particles were of non-spherical shape. With the help of these lidar and sun photometer measurements the particle shape as well as the spherical equivalence were estimated. It turned out that volume equivalent oblate spheroids with an effective axis ratio of 1:1.6 matched these data best. This aspect ratio was also confirmed by independent single particle analyses using a scanning electron microscope. In order to perform the non-spherical computations, a database of single particle optical properties was assembled for oblate and prolate spheroidal particles. These data were also the basis for simulating the non-sphericity effects on the dust optical properties: ωo is influenced by up to a magnitude of only 1% and g is diminished by up to 4% assuming volume equivalent oblate spheroids with an axis ratio of 1:1.6 instead of spheres. Changes in the extinction optical depth are within 3.5%. Non-spherical particles affect the downwelling radiative transfer close to the bottom of the atmosphere, however, they significantly enhance the backscattering towards the top of the atmosphere: Compared to Mie theory the particle non-sphericity leads to forced cooling of the Earth-atmosphere system in the solar spectral range for both dust over ocean and desert.
  • Item
    Characterization of the planetary boundary layer during SAMUM-2 by means of lidar measurements
    (Milton Park : Taylor & Francis, 2017) Groß, Silke; Gasteiger, Josef; Freudenthaler, Volker; Wiegner, Matthias; Geiß, Alexander; Schladitz, Alexander; Toledano, Carlos; Kandler, Konrad; Tesche, Matthias; Ansmann, Albert; Wiedensohler, Alfred
    Measurements with two Raman-depolarization lidars of the Meteorological Institute of the Ludwig-Maximilians- Universit¨at, M¨unchen, Germany, performed during SAMUM-2, were used to characterize the planetary boundary layer (PBL) over Praia, Cape Verde. A novel approach was used to determine the volume fraction of dust υd in the PBL. This approach primarily relies on accurate measurements of the linear depolarization ratio. Comparisons with independent in situ measurements showed the reliability of this approach. Based on our retrievals, two different phases could be distinguished within the measurement period of almost one month. The first (22–31 January 2008) was characterized by high aerosol optical depth (AOD) in the PBL and large υd > 95%. During the second phase, the AOD in the PBL was considerably lower and υd less than ∼40%. These findings were in very good agreement with ground based in situ measurements, when ambient volume fractions are considered that were calculated from the actual measurements of the dry volume fraction. Only in cases when dust was not the dominating aerosol component (second phase), effects due to hygroscopic growth became important.
  • Item
    Dust mobilization and aerosol transport from West Africa to Cape Verde - a meteorological overview of SAMUM-2
    (Milton Park : Taylor & Francis, 2017) Knippertz, Peter; Tesche, Matthias; Heinold, Bernd; Kandler, Konrad; Toledano, Carlos; Esselborn, Michael
    The second field campaign of the SAharan Mineral dUst experiMent (SAMUM-2) was performed between 15 January and 14 February 2008 at the airport of Praia, Cape Verde, and provided valuable information to study the westward transport of Saharan dust and the mixing with biomass-burning smoke and sea-salt aerosol. Here lidar, meteorological, and particle measurements at Praia, together with operational analyses, trajectories, and satellite and synoptic station data are used to give an overview of the meteorological conditions and to place other SAMUM-2 measurements into a large-scale context. It is demonstrated that wintertime dust conditions at Cape Verde are closely related to the movement and intensification of mid-latitude high-pressure systems and the associated pressure gradients at their southern flanks. These cause dust emission over Mauritania, Mali, and Niger, and subsequent westward transport to Cape Verde within about 1–5 d. Dust emissions often peak around midday, suggesting a relation to daytime mixing of momentum from nocturnal low-level jets to the surface. The dust layer over Cape Verde is usually restricted to the lowest 1.5 km of the atmosphere. During periods with near-surface wind speeds about 5.5 ms−1, a maritime aerosol layer develops which often mixes with dust from above. On most days, the middle levels up to about 5 km additionally contain smoke that can be traced back to sources in southernWest Africa. Above this layer, clean air masses are transported to Cape Verde with the westerly flow at the southern side of the subtropical jet. The penetration of extra-tropical disturbances to low latitudes can bring troposphere-deep westerly flow and unusually clean conditions to the region.
  • Item
    Modelling lidar-relevant optical properties of complex mineral dust aerosols
    (Milton Park : Taylor & Francis, 2017) Gasteiger, Josef; Wiegner, Matthias; Groß, Silke; Freudenthaler, Volker; Toledano, Carlos; Tesche, Matthias; Kandler, Konrad
    We model lidar-relevant optical properties of mineral dust aerosols and compare the modelling results with optical properties derived from lidar measurements during the SAMUM field campaigns. The Discrete Dipole Approximation is used for optical modelling of single particles. For modelling of ensemble properties, the desert aerosol type of the OPAC aerosol dataset is extended by mixtures of absorbing and non-absorbing irregularly shaped mineral dust particles. Absorbing and non-absorbing particles are mixed to mimic the natural mineralogical inhomogeneity of dust particles. A sensitivity study reveals that the mineralogical inhomogeneity is critical for the lidar ratio at short wavelengths; it has to be considered for agreement with the observed wavelength dependence of the lidar ratio. The amount of particles with low aspect ratios (about 1.4 and lower) affects the lidar ratio at any lidar wavelength; their amount has to be low for agreement with SAMUM observations. Irregularly shaped dust particles with typical refractive indices, in general, have higher linear depolarization ratios than corresponding spheroids, and improve the agreement with the observations.
  • Item
    Mineral dust in Central Asia: Combining lidar and other measurements during the Central Asian dust experiment (CADEX)
    (Les Ulis : EDP Sciences, 2018) Althausen, Dietrich; Hofer, Julian; Abdullaev, Sabur; Makhmudov, Abduvosit; Baars, Holger; Engelmann, Ronny; Wadinga Fomba, Khanneh; Müller, Konrad; Schettler, Georg; Klüser, Lars; Kandler, Konrad; Nicolae, D.; Makoto, A.; Vassilis, A.; Balis, D.; Behrendt, A.; Comeron, A.; Gibert, F.; Landulfo, E.; McCormick, M.P.; Senff, C.; Veselovskii, I.; Wandinger, U.
    Mineral dust needs to be characterized comprehensively since it contributes to the climate change in Tajikistan / Central Asia. Lidar results from the measurements of mineral dust during CADEX are compared with results of sun photometer measurements, satellite-based measurements, and chemical analysis of ground samples. Although the dust is often advected from far-range sources, it impacts on the local conditions considerably.
  • Item
    Regional Saharan dust modelling during the SAMUM 2006 campaign
    (Milton Park : Taylor & Francis, 2017) Heinold, Bernd; Tegen, Ina; Esselborn, Michael; Kandler, Konrad; Knippertz, Peter; Müller, Detlef; Schladitz, Alexander; Tesche, Matthias; Weinzierl, Bernadett; Ansmann, Albert; Althausen, Dietrich; Laurent, Benoit; Massling, Andreas; Müller, Thomas; Petzold, Andreas; Schepanski, Kerstin; Wiedensohler, Alfred
    The regional dust model system LM-MUSCAT-DES was developed in the framework of the SAMUM project. Using the unique comprehensive data set of near-source dust properties during the 2006SAMUMfield campaign, the performance of the model system is evaluated for two time periods in May and June 2006. Dust optical thicknesses, number size distributions and the position of the maximum dust extinction in the vertical profiles agree well with the observations. However, the spatio-temporal evolution of the dust plumes is not always reproduced due to inaccuracies in the dust source placement by the model. While simulated winds and dust distributions are well matched for dust events caused by dry synoptic-scale dynamics, they are often misrepresented when dust emissions are caused by moist convection or influenced by small-scale topography that is not resolved by the model. In contrast to long-range dust transport, in the vicinity of source regions the model performance strongly depends on the correct prediction of the exact location of sources. Insufficiently resolved vertical grid spacing causes the absence of inversions in the model vertical profiles and likely explains the absence of the observed sharply defined dust layers.
  • Item
    Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: What have we learned?
    (Milton Park : Taylor & Francis, 2011) Ansmann, Albert; Petzold, Andreas; Kandler, Konrad; Tegen, Ina; Wendisch, Manfred; Müller, Detlef; Weinzierl, Bernadett; Müller, Thomas; Heintzenberg, Jost
    Two comprehensive field campaigns were conducted in 2006 and 2008 in the framework of the Saharan Mineral Dust Experiment (SAMUM) project. The relationship between chemical composition, shape morphology, size distribution and optical effects of the dust particles was investigated. The impact of Saharan dust on radiative transfer and the feedback of radiative effects upon dust emission and aerosol transport were studied. Field observations (ground-based, airborne and remote sensing) and modelling results were compared within a variety of dust closure experiments with a strong focus on vertical profiling. For the first time, multiwavelength Raman/polarization lidars and an airborne high spectral resolution lidar were involved in major dust field campaigns and provided profiles of the volume extinction coefficient of the particles at ambient conditions (for the full dust size distribution), of particle-shape-sensitive optical properties at several wavelengths, and a clear separation of dust and smoke profiles allowing for an estimation of the single-scattering albedo of the biomass-burning aerosol. SAMUM–1 took place in southern Morocco close to the Saharan desert in the summer of 2006, whereas SAMUM–2 was conducted in Cape Verde in the outflow region of desert dust and biomass-burning smoke from western Africa in the winter of 2008. This paper gives an overview of the SAMUM concept, strategy and goals, provides snapshots (highlights) of SAMUM–2 observations and modelling efforts, summarizes main findings of SAMUM–1 and SAMUM–2 and finally presents a list of remaining problems and unsolved questions.
  • Item
    In situ aerosol characterization at Cape Verde, Part 1: Particle number size distributions, hygroscopic growth and state of mixing of the marine and Saharan dust aerosol
    (Milton Park : Taylor & Francis, 2017) Schladitz, Alexander; Müller, Thomas; Nowak, Andreas; Kandler, Konrad; Lieke, Kirsten; Massling, Andreas; Wiedensohler, Alfred
    Particle number size distributions and hygroscopic properties of marine and Saharan dust aerosol were investigated during the SAMUM-2 field study at Cape Verde in winter 2008. Aitken and accumulation mode particles were mainly assigned to the marine aerosol, whereas coarse mode particles were composed of sea-salt and a variable fraction of Saharan mineral dust. A new methodical approach was used to derive hygroscopic growth and state of mixing for a particle size range (volume equivalent) from dpve = 26 nm to 10 μm. For hygroscopic particles with dpve < 100 nm, the median hygroscopicity parameter κ is 0.35. From 100 nm < dpve < 350 nm, κ increases to 0.65. For larger particles, κ at dpve = 350 nm was used. For nearly hydrophobic particles, κ is between 0 and 0.1 for dpve < 250 nm and decreases to 0 for dpve > 250 nm. The mixing state of Saharan dust in terms of the number fraction of nearly hydrophobic particles showed the highest variation and ranges from 0.3 to almost 1. This study was used to perform a successful mass closure at ambient conditions and demonstrates the important role of hygroscopic growth of large sea-salt particles.
  • Item
    Dust mobilization and transport in the northern Sahara during SAMUM 2006 - A meteorological overview
    (Milton Park : Taylor & Francis, 2017) Knippertz, Peter; Ansmann, Albert; Althausen, Dietrich; Müller, Detlef; Tesche, Matthias; Bierwirth, Eike; Dinter, Tilman; Müller, Thomas; Von Hoyningen-Huene, Wolfgang; Schepanski, Kerstin; Wendisch, Manfred; Heinold, Bernd; Kandler, Konrad; Petzold, Andreas; Tegen, Ina
    The SAMUM field campaign in southern Morocco in May/June 2006 provides valuable data to study the emission, and the horizontal and vertical transports of mineral dust in the Northern Sahara. Radiosonde and lidar observations show differential advection of air masses with different characteristics during stable nighttime conditions and up to 5-km deep vertical mixing in the strongly convective boundary layer during the day. Lagrangian and synoptic analyses of selected dust periods point to a topographic channel from western Tunisia to central Algeria as a dust source region. Significant emission events are related to cold surges from the Mediterranean in association with eastward passing upper-level waves and lee cyclogeneses south of the Atlas Mountains. Other relevant events are local emissions under a distinct cut-off low over northwestern Africa and gust fronts associated with dry thunderstorms over the Malian and Algerian Sahara. The latter are badly represented in analyses from the European Centre for Medium–Range Weather Forecasts and in a regional dust model, most likely due to problems with moist convective dynamics and a lack of observations in this region. This aspect needs further study. The meteorological source identification is consistent with estimates of optical and mineralogical properties of dust samples.