Search Results

Now showing 1 - 2 of 2
  • Item
    Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal model particles
    (Milton Park : Taylor & Francis, 2017) Otto, Sebastian; Bierwirth, Eike; Weinzierl, Bernadett; Kandler, Konrad; Esselborn, Michael; Tesche, Matthias; Schladitz, Alexander; Wendisch, Manfred; Trautmann, Thomas
    The solar optical properties of Saharan mineral dust observed during the Saharan Mineral Dust Experiment (SAMUM) were explored based on measured size-number distributions and chemical composition. The size-resolved complex refractive index of the dust was derived with real parts of 1.51–1.55 and imaginary parts of 0.0008–0.006 at 550 nm wavelength. At this spectral range a single scattering albedo ωo and an asymmetry parameter g of about 0.8 were derived. These values were largely determined by the presence of coarse particles. Backscatter coefficients and lidar ratios calculated with Mie theory (spherical particles) were not found to be in agreement with independently measured lidar data. Obviously the measured Saharan mineral dust particles were of non-spherical shape. With the help of these lidar and sun photometer measurements the particle shape as well as the spherical equivalence were estimated. It turned out that volume equivalent oblate spheroids with an effective axis ratio of 1:1.6 matched these data best. This aspect ratio was also confirmed by independent single particle analyses using a scanning electron microscope. In order to perform the non-spherical computations, a database of single particle optical properties was assembled for oblate and prolate spheroidal particles. These data were also the basis for simulating the non-sphericity effects on the dust optical properties: ωo is influenced by up to a magnitude of only 1% and g is diminished by up to 4% assuming volume equivalent oblate spheroids with an axis ratio of 1:1.6 instead of spheres. Changes in the extinction optical depth are within 3.5%. Non-spherical particles affect the downwelling radiative transfer close to the bottom of the atmosphere, however, they significantly enhance the backscattering towards the top of the atmosphere: Compared to Mie theory the particle non-sphericity leads to forced cooling of the Earth-atmosphere system in the solar spectral range for both dust over ocean and desert.
  • Item
    Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: What have we learned?
    (Milton Park : Taylor & Francis, 2011) Ansmann, Albert; Petzold, Andreas; Kandler, Konrad; Tegen, Ina; Wendisch, Manfred; Müller, Detlef; Weinzierl, Bernadett; Müller, Thomas; Heintzenberg, Jost
    Two comprehensive field campaigns were conducted in 2006 and 2008 in the framework of the Saharan Mineral Dust Experiment (SAMUM) project. The relationship between chemical composition, shape morphology, size distribution and optical effects of the dust particles was investigated. The impact of Saharan dust on radiative transfer and the feedback of radiative effects upon dust emission and aerosol transport were studied. Field observations (ground-based, airborne and remote sensing) and modelling results were compared within a variety of dust closure experiments with a strong focus on vertical profiling. For the first time, multiwavelength Raman/polarization lidars and an airborne high spectral resolution lidar were involved in major dust field campaigns and provided profiles of the volume extinction coefficient of the particles at ambient conditions (for the full dust size distribution), of particle-shape-sensitive optical properties at several wavelengths, and a clear separation of dust and smoke profiles allowing for an estimation of the single-scattering albedo of the biomass-burning aerosol. SAMUM–1 took place in southern Morocco close to the Saharan desert in the summer of 2006, whereas SAMUM–2 was conducted in Cape Verde in the outflow region of desert dust and biomass-burning smoke from western Africa in the winter of 2008. This paper gives an overview of the SAMUM concept, strategy and goals, provides snapshots (highlights) of SAMUM–2 observations and modelling efforts, summarizes main findings of SAMUM–1 and SAMUM–2 and finally presents a list of remaining problems and unsolved questions.