Search Results

Now showing 1 - 3 of 3
  • Item
    X-ray emission from stainless steel foils irradiated by femtosecond petawatt laser pulses
    (Bristol : IOP Publ., 2018) Alkhimova, M.A.; Faenov, A.Ya.; Pikuz, T.A.; Skobelev, I.Yu.; Pikuz, S.A.; Nishiuchi, M.; Sakaki, H.; Pirozhkov, A.S.; Sagisaka, S.; Dover, N.P.; Kondo, Ko.; Ogura, K.; Fukuda, Y.; Kiriyama, H.; Esirkepov, T.; Bulanov, S V.; Andreev, A.; Kando, M.; Zhidkov, A.; Nishitani, K.; Miyahara, T.; Watanabe, Y.; Kodama, R.; Kondo, K.
    We report about nonlinear growth of x-ray emission intensity emitted from plasma generated by femtosecond petawatt laser pulses irradiating stainless steel foils. X-ray emission intensity increases as ∼ I 4.5 with laser intensity I on a target. High spectrally resolved x-ray emission from front and rear surfaces of 5 μm thickness stainless steel targets were obtained at the wavelength range 1.7-2.1 Å, for the first time in experiments at femtosecond petawatt laser facility J-KAREN-P. Total intensity of front x-ray spectra three times dominates to rear side spectra for maximum laser intensity I ≈ 3.21021 W/cm2. Growth of x-ray emission is mostly determined by contribution of bremsstrahlung radiation that allowed estimating bulk electron plasma temperature for various magnitude of laser intensity on target.
  • Item
    X-ray spectroscopy of super-intense laser-produced plasmas for the study of nonlinear processes. Comparison with PIC simulations
    (Bristol : IOP Publ., 2017) Dalimier, E.; Ya Faenov, A.; Oks, E.; Angelo, P.; Pikuz, T.A.; Fukuda, Y.; Andreev, A.; Koga, J.; Sakaki, H.; Kotaki, H.; Pirozhkov, A.; Hayashi, Y.; Skobelev, I.Yu.; Pikuz, S.A.; Kawachi, T.; Kando, M.; Kondo, K.; Zhidkov, A.; Tubman, E.; Butler, N.M.H.; Dance, R.J.; Alkhimova, M.A.; Booth, N.; Green, J.; Gregory, C.; McKenna, P.; Woolsey, N.; Kodama, R.
    We present X-ray spectroscopic diagnostics in femto-second laser-driven experiments revealing nonlinear phenomena caused by the strong coupling of the laser radiation with the created plasma. Among those nonlinear phenomena, we found the signatures of the Two Plasmon Decay (TPD) instability in a laser-driven CO2 cluster-based plasma by analyzing the Langmuir dips in the profile of the O VIII Lyϵ line, caused by the Langmuir waves created at the high laser intensity 3 1018Wcm-2. With similar laser intensities, we reveal also the nonlinear phenomenon of the Second Harmonic Generation (SHG) of the laser frequency by analyzing the nonlinear phenomenon of satellites of Lyman δ and ϵ lines of Ar XVII. In the case of relativistic laser-plasma interaction we discovered the Parametric Decay Instability (PDI)-induced ion acoustic turbulence produced simultaneously with Langmuir waves via irradiation of thin Si foils by laser intensities of 1021Wcm-2.
  • Item
    EuPRAXIA Conceptual Design Report
    (Berlin ; Heidelberg : Springer, 2020) Assmann, R. W.; Weikum, M. K.; Akhter, T.; Alesini, D.; Alexandrova, A. S.; Anania, M. P.; Andreev, N. E.; Andriyash, I.; Artioli, M.; Aschikhin, A.; Audet, T.; Jafarinia, F. J.; Jakobsson, O.; Jaroszynski, D. A.; Jaster-Merz, S.; Joshi, C.; Kaluza, M.; Kando, M.; Karger, O. S.; Karsch, S.; Khazanov, E.; Bacci, A.; Khikhlukha, D.; Kirchen, M.; Kirwan, G.; Kitégi, C.; Knetsch, A.; Kocon, D.; Koester, P.; Kononenko, O. S.; Korn, G.; Kostyukov, I.; Barna, I. F.; Kruchinin, K. O.; Labate, L.; Le Blanc, C.; Lechner, C.; Lee, P.; Leemans, W.; Lehrach, A.; Li, X.; Li, Y.; Libov, V.; Bartocci, S.; Lifschitz, A.; Lindstrøm, C. A.; Litvinenko, V.; Lu, W.; Lundh, O.; Maier, A. R.; Malka, V.; Manahan, G. G.; Mangles, S. P. D.; Marcelli, A.; Bayramian, A.; Marchetti, B.; Marcouillé, O.; Marocchino, A.; Marteau, F.; Martinez de la Ossa, A.; Martins, J. L.; Mason, P. D.; Massimo, F.; Mathieu, F.; Maynard, G.; Beaton, A.; Mazzotta, Z.; Mironov, S.; Molodozhentsev, A. Y.; Morante, S.; Mosnier, A.; Mostacci, A.; Müller, A. -S.; Murphy, C. D.; Najmudin, Z.; Nghiem, P. A. P.; Beck, A.; Nguyen, F.; Niknejadi, P.; Nutter, A.; Osterhoff, J.; Oumbarek Espinos, D.; Paillard, J. -L.; Papadopoulos, D. N.; Patrizi, B.; Pattathil, R.; Pellegrino, L.; Bellaveglia, M.; Petralia, A.; Petrillo, V.; Piersanti, L.; Pocsai, M. A.; Poder, K.; Pompili, R.; Pribyl, L.; Pugacheva, D.; Reagan, B. A.; Resta-Lopez, J.; Beluze, A.; Ricci, R.; Romeo, S.; Rossetti Conti, M.; Rossi, A. R.; Rossmanith, R.; Rotundo, U.; Roussel, E.; Sabbatini, L.; Santangelo, P.; Sarri, G.; Bernhard, A.; Schaper, L.; Scherkl, P.; Schramm, U.; Schroeder, C. B.; Scifo, J.; Serafini, L.; Sharma, G.; Sheng, Z. M.; Shpakov, V.; Siders, C. W.; Biagioni, A.; Silva, L. O.; Silva, T.; Simon, C.; Simon-Boisson, C.; Sinha, U.; Sistrunk, E.; Specka, A.; Spinka, T. M.; Stecchi, A.; Stella, A.; Bielawski, S.; Stellato, F.; Streeter, M. J. V.; Sutherland, A.; Svystun, E. N.; Symes, D.; Szwaj, C.; Tauscher, G. E.; Terzani, D.; Toci, G.; Tomassini, P.; Bisesto, F. G.; Torres, R.; Ullmann, D.; Vaccarezza, C.; Valléau, M.; Vannini, M.; Vannozzi, A.; Vescovi, S.; Vieira, J. M.; Villa, F.; Wahlström, C. -G.; Bonatto, A.; Walczak, R.; Walker, P. A.; Wang, K.; Welsch, A.; Welsch, C. P.; Weng, S. M.; Wiggins, S. M.; Wolfenden, J.; Xia, G.; Yabashi, M.; Boulton, L.; Zhang, H.; Zhao, Y.; Zhu, J.; Zigler, A.; Brandi, F.; Brinkmann, R.; Briquez, F.; Brottier, F.; Bründermann, E.; Büscher, M.; Buonomo, B.; Bussmann, M. H.; Bussolino, G.; Campana, P.; Cantarella, S.; Cassou, K.; Chancé, A.; Chen, M.; Chiadroni, E.; Cianchi, A.; Cioeta, F.; Clarke, J. A.; Cole, J. M.; Costa, G.; Couprie, M. -E.; Cowley, J.; Croia, M.; Cros, B.; Crump, P. A.; D’Arcy, R.; Dattoli, G.; Del Dotto, A.; Delerue, N.; Del Franco, M.; Delinikolas, P.; De Nicola, S.; Dias, J. M.; Di Giovenale, D.; Diomede, M.; Di Pasquale, E.; Di Pirro, G.; Di Raddo, G.; Dorda, U.; Erlandson, A. C.; Ertel, K.; Esposito, A.; Falcoz, F.; Falone, A.; Fedele, R.; Ferran Pousa, A.; Ferrario, M.; Filippi, F.; Fils, J.; Fiore, G.; Fiorito, R.; Fonseca, R. A.; Franzini, G.; Galimberti, M.; Gallo, A.; Galvin, T. C.; Ghaith, A.; Ghigo, A.; Giove, D.; Giribono, A.; Gizzi, L. A.; Grüner, F. J.; Habib, A. F.; Haefner, C.; Heinemann, T.; Helm, A.; Hidding, B.; Holzer, B. J.; Hooker, S. M.; Hosokai, T.; Hübner, M.; Ibison, M.; Incremona, S.; Irman, A.; Iungo, F.
    This report presents the conceptual design of a new European research infrastructure EuPRAXIA. The concept has been established over the last four years in a unique collaboration of 41 laboratories within a Horizon 2020 design study funded by the European Union. EuPRAXIA is the first European project that develops a dedicated particle accelerator research infrastructure based on novel plasma acceleration concepts and laser technology. It focuses on the development of electron accelerators and underlying technologies, their user communities, and the exploitation of existing accelerator infrastructures in Europe. EuPRAXIA has involved, amongst others, the international laser community and industry to build links and bridges with accelerator science — through realising synergies, identifying disruptive ideas, innovating, and fostering knowledge exchange. The Eu-PRAXIA project aims at the construction of an innovative electron accelerator using laser- and electron-beam-driven plasma wakefield acceleration that offers a significant reduction in size and possible savings in cost over current state-of-the-art radiofrequency-based accelerators. The foreseen electron energy range of one to five gigaelectronvolts (GeV) and its performance goals will enable versatile applications in various domains, e.g. as a compact free-electron laser (FEL), compact sources for medical imaging and positron generation, table-top test beams for particle detectors, as well as deeply penetrating X-ray and gamma-ray sources for material testing. EuPRAXIA is designed to be the required stepping stone to possible future plasma-based facilities, such as linear colliders at the high-energy physics (HEP) energy frontier. Consistent with a high-confidence approach, the project includes measures to retire risk by establishing scaled technology demonstrators. This report includes preliminary models for project implementation, cost and schedule that would allow operation of the full Eu-PRAXIA facility within 8—10 years.