Search Results

Now showing 1 - 2 of 2
  • Item
    Toward edges-rich MoS2 layers via chemical liquid exfoliation triggering distinctive magnetism
    (Milton Park : Taylor & Francis, 2016) Gao, Guanhui; Chen, Chi; Xie, Xiaobin; Su, Yantao; Kang, Shendong; Zhu, Guichi; Gao, Duyang; Eckert, Jürgen; Trampert, Achim; Cai, Lintao
    The magnetic function of layered molybdenum disulfide (MoS2) has been investigated via simulation, but few reliable experimental results have been explored. Herein, we developed edges-rich structural MoS2 nanosheets via liquid phase exfoliation approach, triggering exceptional ferromagnetism. The magnetic measurements revealed the clear ferromagnetic property of layered MoS2, compared to the pristine MoS2 in bulk exhibiting diamagnetism. The existence of ferromagnetism mostly was attributed to the presence of grain boundaries with abundant irregular edges confirmed by the transmission electron microscopy, magnetic force microscopy and X-ray photoelectron spectroscopy, which experimentally provided reliable evidences on irregular edges-rich states engineering ferromagnetism to clarify theoretical calculation.
  • Item
    Synthesis of surfactant-free Cu–Pt dendritic heterostructures with highly electrocatalytic performance for methanol oxidation reaction
    (London [u.a.] : Taylor & Francis, 2016) Kang, Shendong; Gao, Guanhui; Xie, Xiaobin; Shibayama, Tamaki; Lei, Yanhua; Wang, Yan; Cai, Lintao
    A facile and free surfactant strategy is explored to synthesize Cu–Pt bimetallic nano-heterostructures with dendritic exterior. For comparison, the Cu–Pt coral-like nanoparticles are fabricated by using CTAC as a surfactant. The well-designed Cu–Pt dendritic spherical heterostructures exhibit superior enhanced electrocatalytic activity and stability toward methanol oxidation reaction in alkaline media, compared to the Cu–Pt coral-like nanoparticles and the commercial Pt/C, respectively. The advanced technique for fabricating Cu–Pt dendritic spherical heterostructures could pave a way to pursue low-cost Pt-based catalysts, maintaining highly promoted electrocatalytic performance and durability.