Search Results

Now showing 1 - 2 of 2
  • Item
    CHASE-PL Climate Projection dataset over Poland - Bias adjustment of EURO-CORDEX simulations
    (München : European Geopyhsical Union, 2017) Mezghani, Abdelkader; Dobler, Andreas; Haugen, Jan Erik; Benestad, Rasmus E.; Parding, Kajsa M.; Piniewski, Mikołaj; Kardel, Ignacy; Kundzewicz, Zbigniew W.
    The CHASE-PL (Climate change impact assessment for selected sectors in Poland) Climate Projections – Gridded Daily Precipitation and Temperature dataset 5 km (CPLCP-GDPT5) consists of projected daily minimum and maximum air temperatures and precipitation totals of nine EURO-CORDEX regional climate model outputs bias corrected and downscaled to a 5 km  ×  5 km grid. Simulations of one historical period (1971–2000) and two future horizons (2021–2050 and 2071–2100) assuming two representative concentration pathways (RCP4.5 and RCP8.5) were produced. We used the quantile mapping method and corrected any systematic seasonal bias in these simulations before assessing the changes in annual and seasonal means of precipitation and temperature over Poland. Projected changes estimated from the multi-model ensemble mean showed that annual means of temperature are expected to increase steadily by 1 °C until 2021–2050 and by 2 °C until 2071–2100 assuming the RCP4.5 emission scenario. Assuming the RCP8.5 emission scenario, this can reach up to almost 4 °C by 2071–2100. Similarly to temperature, projected changes in regional annual means of precipitation are expected to increase by 6 to 10 % and by 8 to 16 % for the two future horizons and RCPs, respectively. Similarly, individual model simulations also exhibited warmer and wetter conditions on an annual scale, showing an intensification of the magnitude of the change at the end of the 21st century. The same applied for projected changes in seasonal means of temperature showing a higher winter warming rate by up to 0.5 °C compared to the other seasons. However, projected changes in seasonal means of precipitation by the individual models largely differ and are sometimes inconsistent, exhibiting spatial variations which depend on the selected season, location, future horizon, and RCP. The overall range of the 90 % confidence interval predicted by the ensemble of multi-model simulations was found to likely vary between −7 % (projected for summer assuming the RCP4.5 emission scenario) and +40 % (projected for winter assuming the RCP8.5 emission scenario) by the end of the 21st century. Finally, this high-resolution bias-corrected product can serve as a basis for climate change impact and adaptation studies for many sectors over Poland. The CPLCP-GDPT5 dataset is publicly available at https://doi.org/10.4121/uuid:e940ec1a-71a0-449e-bbe3-29217f2ba31d.
  • Item
    CPLFD-GDPT5: High-resolution gridded daily precipitation and temperature data set for two largest Polish river basins
    (München : European Geopyhsical Union, 2016) Berezowsk, Tomasz; Szcześniak, Mateusz; Kardel, Ignacy; Michałowski, Robert; Okruszko, Tomasz; Mezghani, Abdelkader; Piniewski, Mikołaj
    The CHASE-PL (Climate change impact assessment for selected sectors in Poland) Forcing Data–Gridded Daily Precipitation & Temperature Dataset–5 km (CPLFD-GDPT5) consists of 1951–2013 daily minimum and maximum air temperatures and precipitation totals interpolated onto a 5 km grid based on daily meteorological observations from the Institute of Meteorology and Water Management (IMGW-PIB; Polish stations), Deutscher Wetterdienst (DWD, German and Czech stations), and European Climate Assessment and Dataset (ECAD) and National Oceanic and Atmosphere Administration–National Climatic Data Center (NOAA-NCDC) (Slovak, Ukrainian, and Belarusian stations). The main purpose for constructing this product was the need for long-term aerial precipitation and temperature data for earth-system modelling, especially hydrological modelling. The spatial coverage is the union of the Vistula and Oder basins and Polish territory. The number of available meteorological stations for precipitation and temperature varies in time from about 100 for temperature and 300 for precipitation in the 1950s up to about 180 for temperature and 700 for precipitation in the 1990s. The precipitation data set was corrected for snowfall and rainfall under-catch with the Richter method. The interpolation methods were kriging with elevation as external drift for temperatures and indicator kriging combined with universal kriging for precipitation. The kriging cross validation revealed low root-mean-squared errors expressed as a fraction of standard deviation (SD): 0.54 and 0.47 for minimum and maximum temperature, respectively, and 0.79 for precipitation. The correlation scores were 0.84 for minimum temperatures, 0.88 for maximum temperatures, and 0.65 for precipitation. The CPLFD-GDPT5 product is consistent with 1971–2000 climatic data published by IMGW-PIB. We also confirm good skill of the product for hydrological modelling by performing an application using the Soil and Water Assessment Tool (SWAT) in the Vistula and Oder basins.