Search Results

Now showing 1 - 9 of 9
  • Item
    Direct transfer of magnetic sensor devices to elastomeric supports for stretchable electronics
    (Hoboken, NJ : Wiley, 2015) Melzer, Michael; Karnaushenko, Daniil; Lin, Gungun; Baunack, Stefan; Makarov, Denys; Schmidt, Oliver G.
    A novel fabrication method for stretchable magnetoresistive sensors is introduced, which allows the transfer of a complex microsensor systems prepared on common rigid donor substrates to prestretched elastomeric membranes in a single step. This direct transfer printing method boosts the fabrication potential of stretchable magnetoelectronics in terms of miniaturization and level of complexity, and provides strain‐invariant sensors up to 30% tensile deformation.
  • Item
    Wearable magnetic field sensors for flexible electronics
    (Hoboken, NJ : Wiley, 2014) Melzer, Michael; Mönch, Jens Ingolf; Makarov, Denys; Zabila, Yevhen; Bermúdez, Gilbert Santiago Cañón; Karnaushenko, Daniil; Baunack, Stefan; Bahr, Falk; Yan, Chenglin; Kaltenbrunner, Martin; Schmidt, Oliver G.
    Highly flexible bismuth Hall sensors on polymeric foils are fabricated, and the key optimization steps that are required to boost their sensitivity to the bulk value are identified. The sensor can be bent around the wrist or positioned on the finger to realize an interactive pointing device for wearable electronics. Furthermore, this technology is of great interest for the rapidly developing market of ­eMobility, for optimization of eMotors and magnetic bearings.
  • Item
    Biomimetic microelectronics for regenerative neuronal cuff implants
    (Hoboken, NJ : Wiley, 2015) Karnaushenko, Daniil; Münzenrieder, Niko; Karnaushenko, Dmitriy D.; Koch, Britta; Meyer, Anne K.; Baunack, Stefan; Petti, Luisa; Tröster, Gerhard; Makarov, Denys; Schmidt, Oliver G.
    Smart biomimetics, a unique class of devices combining the mechanical adaptivity of soft actuators with the imperceptibility of microelectronics, is introduced. Due to their inherent ability to self‐assemble, biomimetic microelectronics can firmly yet gently attach to an inorganic or biological tissue enabling enclosure of, for example, nervous fibers, or guide the growth of neuronal cells during regeneration.
  • Item
    Imperceptible magnetoelectronics
    (London : Nature Publishing Group, 2015) Melzer, Michael; Kaltenbrunner, Martin; Makarov, Denys; Karnaushenko, Dmitriy; Karnaushenko, Daniil; Sekitani, Tsuyoshi; Someya, Takao; Schmidt, Oliver G.
    Future electronic skin aims to mimic nature’s original both in functionality and appearance. Although some of the multifaceted properties of human skin may remain exclusive to the biological system, electronics opens a unique path that leads beyond imitation and could equip us with unfamiliar senses. Here we demonstrate giant magnetoresistive sensor foils with high sensitivity, unmatched flexibility and mechanical endurance. They are <2 μm thick, extremely flexible (bending radii <3 μm), lightweight (≈3 g m−2) and wearable as imperceptible magneto-sensitive skin that enables proximity detection, navigation and touchless control. On elastomeric supports, they can be stretched uniaxially or biaxially, reaching strains of >270% and endure over 1,000 cycles without fatigue. These ultrathin magnetic field sensors readily conform to ubiquitous objects including human skin and offer a new sense for soft robotics, safety and healthcare monitoring, consumer electronics and electronic skin devices.
  • Item
    Printable magnetoelectronics
    (Hoboken, NJ : Wiley, 2013) Makarov, Denys; Karnaushenko, Daniil; Schmidt, Oliver G.
    The field of printable electronics is well developed. A large variety of electronic components assembled as printable optoelectronic devices and communication modules are already available. However, the element responding to a magnetic field, which is highly demanded for the concept of printable electronics has only been realized very recently. A printable magnetic sensing device has been one of the remaining missing building blocks crucial to realize the concept of entirely printable electronics. Here, we position the novel topic of printable magnetic sensorics in a family of printable electronics and highlight possible application directions of this technology.
  • Item
    Entirely flexible on-site conditioned magnetic sensorics
    (Hoboken, NJ : Wiley, 2016) Münzenrieder, Niko; Karnaushenko, Daniil; Petti, Luisa; Cantarella, Giuseppe; Vogt, Christian; Büthe, Lars; Karnaushenko, Dmitriy D.; Schmidt, Oliver G.; Makarov, Denys; Tröster, Gerhard
    The first entirely flexible integrated magnetic field sensor system is realized consisting of a flexible giant magnetoresistive bridge on‐site conditioned using high‐performance IGZO‐based readout electronics. The system outperforms commercial fully integrated rigid magnetic sensors by at least one order of magnitude, whereas all components stay fully functional when bend to a radius of 5 mm.
  • Item
    Self‐assembled on‐chip‐integrated giant magneto‐impedance sensorics
    (Hoboken, NJ : Wiley, 2015) Karnaushenko, Daniil; Karnaushenko, Dmitriy D.; Makarov, Denys; Baunack, Stefan; Schäfer, Rudolf; Schmidt, Oliver G.
    A novel method relying on strain engineering to realize arrays of on‐chip‐integrated giant magneto‐impedance (GMI) sensors equipped with pick‐up coils is put forth. The geometrical transformation of an initially planar layout into a tubular 3D architecture stabilizes favorable azimuthal magnetic domain patterns. This work creates a solid foundation for further development of CMOS compatible GMI sensorics for magnetoencephalography.
  • Item
    High-performance magnetic sensorics for printable and flexible electronics
    (Hoboken, NJ : Wiley, 2014) Karnaushenko, Daniil; Makarov, Denys; Stöber, Max; Karnaushenko, Dmitriy D.; Baunack, Stefan; Schmidt, Oliver G.
    High‐performance giant magnetoresistive (GMR) sensorics are realized, which are printed at predefined locations on flexible circuitry. Remarkably, the printed magnetosensors remain fully operational over the complete consumer temperature range and reveal a giant magnetoresistance up to 37% and a sensitivity of 0.93 T−1 at 130 mT. With these specifications, printed magnetoelectronics can be controlled using flexible active electronics for the realization of smart packaging and energy‐efficient switches.
  • Item
    Monitoring microbial metabolites using an inductively coupled resonance circuit
    (London : Nature Publishing Group, 2015) Karnaushenko, Daniil; Baraban, Larysa; Ye, Dan; Uguz, Ilke; Mendes, Rafael G.; Rümmeli, Mark H.; de Visser, J. Arjan G.M.; Schmidt, Oliver G.; Cuniberti, Gianaurelio; Makarov, Denys
    We present a new approach to monitor microbial population dynamics in emulsion droplets via changes in metabolite composition, using an inductively coupled LC resonance circuit. The signal measured by such resonance detector provides information on the magnetic field interaction with the bacterial culture, which is complementary to the information accessible by other detection means, based on electric field interaction, i.e. capacitive or resistive, as well as optical techniques. Several charge-related factors, including pH and ammonia concentrations, were identified as possible contributors to the characteristic of resonance detector profile. The setup enables probing the ionic byproducts of microbial metabolic activity at later stages of cell growth, where conventional optical detection methods have no discriminating power.