Search Results

Now showing 1 - 10 of 14
  • Item
    Direct transfer of magnetic sensor devices to elastomeric supports for stretchable electronics
    (Hoboken, NJ : Wiley, 2015) Melzer, Michael; Karnaushenko, Daniil; Lin, Gungun; Baunack, Stefan; Makarov, Denys; Schmidt, Oliver G.
    A novel fabrication method for stretchable magnetoresistive sensors is introduced, which allows the transfer of a complex microsensor systems prepared on common rigid donor substrates to prestretched elastomeric membranes in a single step. This direct transfer printing method boosts the fabrication potential of stretchable magnetoelectronics in terms of miniaturization and level of complexity, and provides strain‐invariant sensors up to 30% tensile deformation.
  • Item
    Wearable magnetic field sensors for flexible electronics
    (Hoboken, NJ : Wiley, 2014) Melzer, Michael; Mönch, Jens Ingolf; Makarov, Denys; Zabila, Yevhen; Bermúdez, Gilbert Santiago Cañón; Karnaushenko, Daniil; Baunack, Stefan; Bahr, Falk; Yan, Chenglin; Kaltenbrunner, Martin; Schmidt, Oliver G.
    Highly flexible bismuth Hall sensors on polymeric foils are fabricated, and the key optimization steps that are required to boost their sensitivity to the bulk value are identified. The sensor can be bent around the wrist or positioned on the finger to realize an interactive pointing device for wearable electronics. Furthermore, this technology is of great interest for the rapidly developing market of ­eMobility, for optimization of eMotors and magnetic bearings.
  • Item
    Active Matrix Flexible Sensory Systems: Materials, Design, Fabrication, and Integration
    (Weinheim : Wiley-VCH Verlag GmbH & Co. KGaA, 2022) Bao, Bin; Karnaushenko, Dmitriy D.; Schmidt, Oliver G.; Song, Yanlin; Karnaushenko, Daniil
    A variety of modern applications including soft robotics, prosthetics, and health monitoring devices that cover electronic skins (e-skins), wearables as well as implants have been developed within the last two decades to bridge the gap between artificial and biological systems. During this development, high-density integration of various sensing modalities into flexible electronic devices becomes vitally important to improve the perception and interaction of the human bodies and robotic appliances with external environment. As a key component in flexible electronics, the flexible thin-film transistors (TFTs) have seen significant advances, allowing for building flexible active matrices. The flexible active matrices have been integrated with distributed arrays of sensing elements, enabling the detection of signals over a large area. The integration of sensors within pixels of flexible active matrices has brought the application scenarios to a higher level of sophistication with many advanced functionalities. Herein, recent progress in the active matrix flexible sensory systems is reviewed. The materials used to construct the semiconductor channels, the dielectric layers, and the flexible substrates for the active matrices are summarized. The pixel designs and fabrication strategies for the active matrix flexible sensory systems are briefly discussed. The applications of the flexible sensory systems are exemplified by reviewing pressure sensors, temperature sensors, photodetectors, magnetic sensors, and biosignal sensors. At the end, the recent development is summarized and the vision on the further advances of flexible active matrix sensory systems is provided.
  • Item
    Biomimetic microelectronics for regenerative neuronal cuff implants
    (Hoboken, NJ : Wiley, 2015) Karnaushenko, Daniil; Münzenrieder, Niko; Karnaushenko, Dmitriy D.; Koch, Britta; Meyer, Anne K.; Baunack, Stefan; Petti, Luisa; Tröster, Gerhard; Makarov, Denys; Schmidt, Oliver G.
    Smart biomimetics, a unique class of devices combining the mechanical adaptivity of soft actuators with the imperceptibility of microelectronics, is introduced. Due to their inherent ability to self‐assemble, biomimetic microelectronics can firmly yet gently attach to an inorganic or biological tissue enabling enclosure of, for example, nervous fibers, or guide the growth of neuronal cells during regeneration.
  • Item
    Imperceptible magnetoelectronics
    (London : Nature Publishing Group, 2015) Melzer, Michael; Kaltenbrunner, Martin; Makarov, Denys; Karnaushenko, Dmitriy; Karnaushenko, Daniil; Sekitani, Tsuyoshi; Someya, Takao; Schmidt, Oliver G.
    Future electronic skin aims to mimic nature’s original both in functionality and appearance. Although some of the multifaceted properties of human skin may remain exclusive to the biological system, electronics opens a unique path that leads beyond imitation and could equip us with unfamiliar senses. Here we demonstrate giant magnetoresistive sensor foils with high sensitivity, unmatched flexibility and mechanical endurance. They are <2 μm thick, extremely flexible (bending radii <3 μm), lightweight (≈3 g m−2) and wearable as imperceptible magneto-sensitive skin that enables proximity detection, navigation and touchless control. On elastomeric supports, they can be stretched uniaxially or biaxially, reaching strains of >270% and endure over 1,000 cycles without fatigue. These ultrathin magnetic field sensors readily conform to ubiquitous objects including human skin and offer a new sense for soft robotics, safety and healthcare monitoring, consumer electronics and electronic skin devices.
  • Item
    Entirely flexible on-site conditioned magnetic sensorics
    (Hoboken, NJ : Wiley, 2016) Münzenrieder, Niko; Karnaushenko, Daniil; Petti, Luisa; Cantarella, Giuseppe; Vogt, Christian; Büthe, Lars; Karnaushenko, Dmitriy D.; Schmidt, Oliver G.; Makarov, Denys; Tröster, Gerhard
    The first entirely flexible integrated magnetic field sensor system is realized consisting of a flexible giant magnetoresistive bridge on‐site conditioned using high‐performance IGZO‐based readout electronics. The system outperforms commercial fully integrated rigid magnetic sensors by at least one order of magnitude, whereas all components stay fully functional when bend to a radius of 5 mm.
  • Item
    Self‐assembled on‐chip‐integrated giant magneto‐impedance sensorics
    (Hoboken, NJ : Wiley, 2015) Karnaushenko, Daniil; Karnaushenko, Dmitriy D.; Makarov, Denys; Baunack, Stefan; Schäfer, Rudolf; Schmidt, Oliver G.
    A novel method relying on strain engineering to realize arrays of on‐chip‐integrated giant magneto‐impedance (GMI) sensors equipped with pick‐up coils is put forth. The geometrical transformation of an initially planar layout into a tubular 3D architecture stabilizes favorable azimuthal magnetic domain patterns. This work creates a solid foundation for further development of CMOS compatible GMI sensorics for magnetoencephalography.
  • Item
    Shape-Controlled Flexible Microelectronics Facilitated by Integrated Sensors and Conductive Polymer Actuators
    (Weinheim : Wiley-VCH Verlag GmbH & Co. KGaA, 2021) Rivkin, Boris; Becker, Christian; Akbar, Farzin; Ravishankar, Rachappa; Karnaushenko, Dmitriy; Naumann, Ronald; Mirhajivarzaneh, Aaleh; Medina-Sánchez, Mariana; Karnaushenko, Daniil; Schmidt, Oliver G.
    The next generation of biomedical tools requires reshapeable electronics to closely interface with biological tissues. This will offer unique mechanical properties and the ability to conform to irregular geometries while being robust and lightweight. Such devices can be achieved with soft materials and thin-film structures that are able to reshape on demand. However, reshaping at the submillimeter scale remains a challenging task. Herein, shape-controlled microscale devices are demonstrated that integrate electronic sensors and electroactive polymer actuators. The fast and biocompatible actuators are capable of actively reshaping the device into flat or curved geometries. The curvature and position of the devices are monitored with strain or magnetic sensors. The sensor signals are used in a closed feedback loop to control the actuators. The devices are wafer-scale microfabricated resulting in multiple functional units capable of grasping, holding, and releasing biological tissues, as demonstrated with a neuronal bundle.
  • Item
    3D Self‐Assembled Microelectronic Devices: Concepts, Materials, Applications
    (Hoboke, NJ : Wiley, 2020) Karnaushenko, Daniil; Kang, Tong; Bandari, Vineeth K.; Zhu, Feng; Schmidt, Oliver G.
    Modern microelectronic systems and their components are essentially 3D devices that have become smaller and lighter in order to improve performance and reduce costs. To maintain this trend, novel materials and technologies are required that provide more structural freedom in 3D over conventional microelectronics, as well as easier parallel fabrication routes while maintaining compatability with existing manufacturing methods. Self‐assembly of initially planar membranes into complex 3D architectures offers a wealth of opportunities to accommodate thin‐film microelectronic functionalities in devices and systems possessing improved performance and higher integration density. Existing work in this field, with a focus on components constructed from 3D self‐assembly, is reviewed, and an outlook on their application potential in tomorrow's microelectronics world is provided.
  • Item
    High-performance magnetic sensorics for printable and flexible electronics
    (Hoboken, NJ : Wiley, 2014) Karnaushenko, Daniil; Makarov, Denys; Stöber, Max; Karnaushenko, Dmitriy D.; Baunack, Stefan; Schmidt, Oliver G.
    High‐performance giant magnetoresistive (GMR) sensorics are realized, which are printed at predefined locations on flexible circuitry. Remarkably, the printed magnetosensors remain fully operational over the complete consumer temperature range and reveal a giant magnetoresistance up to 37% and a sensitivity of 0.93 T−1 at 130 mT. With these specifications, printed magnetoelectronics can be controlled using flexible active electronics for the realization of smart packaging and energy‐efficient switches.