Search Results

Now showing 1 - 2 of 2
  • Item
    Nano-biosupercapacitors enable autarkic sensor operation in blood
    ([London] : Nature Publishing Group UK, 2021) Lee, Yeji; Bandari, Vineeth Kumar; Li, Zhe; Medina-Sánchez, Mariana; Maitz, Manfred F.; Karnaushenko, Daniil; Tsurkan, Mikhail V; Karnaushenko, Dmitriy D.; Schmidt, Oliver G.
    Today’s smallest energy storage devices for in-vivo applications are larger than 3 mm3 and lack the ability to continuously drive the complex functions of smart dust electronic and microrobotic systems. Here, we create a tubular biosupercapacitor occupying a mere volume of 1/1000 mm3 (=1 nanoliter), yet delivering up to 1.6 V in blood. The tubular geometry of this nano-biosupercapacitor provides efficient self-protection against external forces from pulsating blood or muscle contraction. Redox enzymes and living cells, naturally present in blood boost the performance of the device by 40% and help to solve the self-discharging problem persistently encountered by miniaturized supercapacitors. At full capacity, the nano-biosupercapacitors drive a complex integrated sensor system to measure the pH-value in blood. This demonstration opens up opportunities for next generation intravascular implants and microrobotic systems operating in hard-to-reach small spaces deep inside the human body.
  • Item
    Self-sufficient self-oscillating microsystem driven by low power at low Reynolds numbers
    (Washington, DC [u.a.] : American Association for the Advancement of Science, 2021) Akbar, Farzin; Rivkin, Boris; Aziz, Azaam; Becker, Christian; Karnaushenko, Dmitriy D.; Medina-Sánchez, Mariana; Karnaushenko, Daniil; Schmidt, Oliver G.
    Oscillations at several hertz are a key feature of dynamic behavior of various biological entities, such as the pulsating heart, firing neurons, or the sperm-beating flagellum. Inspired by nature’s fundamental self-oscillations, we use electroactive polymer microactuators and three-dimensional microswitches to create a synthetic electromechanical parametric relaxation oscillator (EMPRO) that relies on the shape change of micropatterned polypyrrole and generates a rhythmic motion at biologically relevant stroke frequencies of up to ~95 Hz. We incorporate an Ag-Mg electrochemical battery into the EMPRO for autonomous operation in a nontoxic environment. Such a self-sufficient self-oscillating microsystem offers new opportunities for artificial life at low Reynolds numbers by, for instance, mimicking and replacing nature’s propulsion and pumping units.