Search Results

Now showing 1 - 2 of 2
  • Item
    Imperceptible Supercapacitors with High Area-Specific Capacitance
    (Weinheim : Wiley-VCH, 2021) Ge, Jin; Zhu, Minshen; Eisner, Eric; Yin, Yin; Dong, Haiyun; Karnaushenko, Dmitriy D.; Karnaushenko, Daniil; Zhu, Feng; Ma, Libo; Schmidt, Oliver G.
    Imperceptible electronics will make next-generation healthcare and biomedical systems thinner, lighter, and more flexible. While other components are thoroughly investigated, imperceptible energy storage devices lag behind because the decrease of thickness impairs the area-specific energy density. Imperceptible supercapacitors with high area-specific capacitance based on reduced graphene oxide/polyaniline (RGO/PANI) composite electrodes and polyvinyl alcohol (PVA)/H2SO4 gel electrolyte are reported. Two strategies to realize a supercapacitor with a total device thickness of 5 µm—including substrate, electrode, and electrolyte—and an area-specific capacitance of 36 mF cm−2 simultaneously are implemented. First, the void volume of the RGO/PANI electrodes through mechanical compression is reduced, which decreases the thickness by 83% while retaining 89% of the capacitance. Second, the PVA-to-H2SO4 mass ratio is decreased to 1:4.5, which improves the ion conductivity by 5000% compared to the commonly used PVA/H2SO4 gel. Both advantages enable a 2 µm-thick gel electrolyte for planar interdigital supercapacitors. The impressive electromechanical stability of the imperceptible supercapacitors by wrinkling the substrate to produce folds with radii of 6 µm or less is demonstrated. The supercapacitors will be meaningful energy storage modules for future self-powered imperceptible electronics.
  • Item
    Stress‐Actuated Spiral Microelectrode for High‐Performance Lithium‐Ion Microbatteries
    (2020) Tang, Hongmei; Karnaushenko, Dmitriy D.; Neu, Volker; Gabler, Felix; Wang, Sitao; Liu, Lixiang; Li, Yang; Wang, Jiawei; Zhu, Minshen; Schmidt, Oliver G.
    Miniaturization of batteries lags behind the success of modern electronic devices. Neither the device volume nor the energy density of microbatteries meets the requirement of microscale electronic devices. The main limitation for pushing the energy density of microbatteries arises from the low mass loading of active materials. However, merely pushing the mass loading through increased electrode thickness is accompanied by the long charge transfer pathway and inferior mechanical properties for long‐term operation. Here, a new spiral microelectrode upon stress‐actuation accomplishes high mass loading but short charge transfer pathways. At a small footprint area of around 1 mm2, a 21‐fold increase of the mass loading is achieved while featuring fast charge transfer at the nanoscale. The spiral microelectrode delivers a maximum area capacity of 1053 µAh cm−2 with a retention of 67% over 50 cycles. Moreover, the energy density of the cylinder microbattery using the spiral microelectrode as the anode reaches 12.6 mWh cm−3 at an ultrasmall volume of 3 mm3. In terms of the device volume and energy density, the cylinder microbattery outperforms most of the current microbattery technologies, and hence provides a new strategy to develop high‐performance microbatteries that can be integrated with miniaturized electronic devices.