Search Results

Now showing 1 - 10 of 11
Loading...
Thumbnail Image
Item

Ceria/silicon carbide core–shell materials prepared by miniemulsion technique

2011, Borchardt, Lars, Oschatz, Martin, Frind, Robert, Kockrick, Emanuel, Lohe, Martin R., Hauser, Christoph P., Weiss, Clemens K., Landfester, Katharina, Büchner, Bernd, Kaskel, Stefan

For the first time we present the synthesis of CeO2/Si(O)C core–shell particles prepared by the miniemulsion technique. The Si(O)C core was obtained by means of a polycarbosilane precursor (SMP10), which was subsequently functionalized with ceria and pyrolyzed to the ceramic. The size of these particles could easily be adjusted by varying the surfactants and the surfactant concentration, or by the addition of comonomers. Hence particle sizes ranged from 100 to 1000 nm, tunable by the preparation conditions. All materials were characterized by photon cross correlation spectroscopy, scanning electron microscopy and elemental mapping investigations. Furthermore, first catalytic tests were carried out by temperature programmed oxidation (TPO) of methane, and the activity of this material in lowering the onset temperature of methane combustion by 262 K was documented.

Loading...
Thumbnail Image
Item

The force of MOFs: The potential of switchable metal-organic frameworks as solvent stimulated actuators

2020, Freund, Pascal, Senkovska, Irena, Zheng, Bin, Bon, Volodymyr, Krause, Beate, Maurin, Guillaume, Kaskel, Stefan

We evaluate experimentally the force exerted by flexible metal-organic frameworks through expansion for a representative model system, namely MIL-53(Al). The results obtained are compared with data collected from intrusion experiments while molecular simulations are performed to shed light on the re-opening of the guest-loaded structure. The critical impact of the transition stimulating medium on the magnitude of the expansion force is demonstrated.

No Thumbnail Available
Item

Emulsion soft templating of carbide-derived carbon nanospheres with controllable porosity for capacitive electrochemical energy storage

2015, Oschatz, Martin, Zeiger, Marco, Jaeckel, Nicolas, Strubel, Patrick, Borchardt, Lars, Reinhold, Romy, Nickel, Winfried, Eckert, Jürgen, Presser, Volker, Kaskel, Stefan

A new approach to produce carbide-derived carbon nanospheres of 20-200 nm in diameter based on a novel soft-templating technique is presented. Platinum catalysis is used for the cross-linking of liquid (allylhydrido)polycarbosilane polymer chains with para-divinylbenzene within oil-in-water miniemulsions. Quantitative implementation of the pre-ceramic polymer can be achieved allowing precise control over the resulting materials. After pyrolysis and high-temperature chlorine treatment, resulting particles offer ideal spherical shape, very high specific surface area (up to 2347 m^2/g^-1), and large micro/mesopore volume (up to 1.67 cm^3/g^-1). The internal pore structure of the nanospheres is controllable by the composition of the oil phase within the miniemulsions. The materials are highly suitable for electrochemical double-layer capacitors with high specific capacitances in aqueous 1 M Na2SO4 solution (110 F/g^-1) and organic 1 M tetraethylammonium tetrafluoroborate in acetonitrile (130 F/g^-1).

Loading...
Thumbnail Image
Item

Atomic Sn–enabled high-utilization, large-capacity, and long-life Na anode

2022, Xu, Fei, Qu, Changzhen, Lu, Qiongqiong, Meng, Jiashen, Zhang, Xiuhai, Xu, Xiaosa, Qiu, Yuqian, Ding, Baichuan, Yang, Jiaying, Cao, Fengren, Yang, Penghui, Jiang, Guangshen, Kaskel, Stefan, Ma, Jingyuan, Li, Liang, Zhang, Xingcai, Wang, Hongqiang

Constructing robust nucleation sites with an ultrafine size in a confined environment is essential toward simultaneously achieving superior utilization, high capacity, and long-term durability in Na metal-based energy storage, yet remains largely unexplored. Here, we report a previously unexplored design of spatially confined atomic Sn in hollow carbon spheres for homogeneous nucleation and dendrite-free growth. The designed architecture maximizes Sn utilization, prevents agglomeration, mitigates volume variation, and allows complete alloying-dealloying with high-affinity Sn as persistent nucleation sites, contrary to conventional spatially exposed large-size ones without dealloying. Thus, conformal deposition is achieved, rendering an exceptional capacity of 16 mAh cm−2 in half-cells and long cycling over 7000 hours in symmetric cells. Moreover, the well-known paradox is surmounted, delivering record-high Na utilization (e.g., 85%) and large capacity (e.g., 8 mAh cm−2) while maintaining extraordinary durability over 5000 hours, representing an important breakthrough for stabilizing Na anode.

Loading...
Thumbnail Image
Item

Gold Aerogels: Three-Dimensional Assembly of Nanoparticles and Their Use as Electrocatalytic Interfaces

2016, Wen, Dan, Liu, Wei, Haubold, Danny, Zhu, Chengzhou, Oschatz, Martin, Holzschuh, Matthias, Wolf, André, Simon, Frank, Kaskel, Stefan, Eychmüller, Alexander

Three-dimensional (3D) porous metal nanostructures have been a long sought-after class of materials due to their collective properties and widespread applications. In this study, we report on a facile and versatile strategy for the formation of Au hydrogel networks involving the dopamine-induced 3D assembly of Au nanoparticles. Following supercritical drying, the resulting Au aerogels exhibit high surface areas and porosity. They are all composed of porous nanowire networks reflecting in their diameters those of the original particles (5–6 nm) via electron microscopy. Furthermore, electrocatalytic tests were carried out in the oxidation of some small molecules with Au aerogels tailored by different functional groups. The beta-cyclodextrin-modified Au aerogel, with a host–guest effect, represents a unique class of porous metal materials of considerable interest and promising applications for electrocatalysis.

Loading...
Thumbnail Image
Item

Nickel cobalt oxide hollow nanosponges as advanced electrocatalysts for the oxygen evolution reaction

2015, Zhu, Chengzhou, Wen, Dan, Leubner, Susanne, Oschatz, Martin, Liu, Wei, Holzschuh, Matthias, Simon, Frank, Kaskel, Stefan, Eychmüller, Alexander

A class of novel nickel cobalt oxide hollow nanosponges were synthesized through a sodium borohydride reduction strategy. Due to their porous and hollow nanostructures, and synergetic effects between their components, the optimized nickel cobalt oxide nanosponges exhibited excellent catalytic activity towards oxygen evolution reaction.

Loading...
Thumbnail Image
Item

Preparation and Application of ZIF-8 Thin Layers

2021, Schernikau, Martin, Sablowski, Jakob, Gonzalez Martinez, Ignacio Guillermo, Unz, Simon, Kaskel, Stefan, Mikhailova, Daria

Herein we compare various preparation methods for thin ZIF-8 layers on a Cu substrate for application as a host material for omniphobic lubricant-infused surfaces. Such omniphobic surfaces can be used in thermal engineering applications, for example to achieve dropwise condensation or anti-fouling and anti-icing surface properties. For these applications, a thin, conformal, homogeneous, mechanically and chemically stable coating is essential. In this study, thin ZIF-8 layers were deposited on a Cu substrate by different routes, such as (i) electrochemical anodic deposition on a Zn-covered Cu substrate, (ii) doctor blade technique for preparation of a composite layer containing PVDF binder and ZIF-8, as well as (iii) doctor blade technique for preparation of a two-layer composite on the Cu substrate containing a PVDF-film and a ZIF-8 layer. The morphology and topography of the coatings were compared by using profilometry, XRD, SEM and TEM techniques. After infusion with a perfluorinated oil, the wettability of the surfaces was assessed by contact angle measurements, and advantages of each preparation method were discussed.

Loading...
Thumbnail Image
Item

Hydrophilic non-precious metal nitrogen-doped carbon electrocatalysts for enhanced efficiency in oxygen reduction reaction

2015, Hao, Guang-Ping, Sahraie, Nastaran Ranjbar, Zhang, Qiang, Krause, Simon, Oschatz, Martin, Bachmatiuk, Alicja, Strasser, Peter, Kaskel, Stefan

Exploring the role of surface hydrophilicity of non-precious metal N-doped carbon electrocatalysts in electrocatalysis is challenging. Herein we discover an ultra-hydrophilic non-precious carbon electrocatalyst, showing enhanced catalysis efficiency on both gravimetric and areal basis for oxygen reduction reaction due to a high dispersion of active centres.

Loading...
Thumbnail Image
Item

High-defect hydrophilic carbon cuboids anchored with Co/CoO nanoparticles as highly efficient and ultra-stable lithium-ion battery anodes

2016, Sun, Xiaolei, Hao, Guang-Ping, Lu, Xueyi, Xi, Lixia, Liu, Bo, Si, Wenping, Ma, Chuansheng, Liu, Qiming, Zhang, Qiang, Kaskel, Stefan, Schmidt, Oliver G.

We propose an effective strategy to engineer a unique kind of porous carbon cuboid with tightly anchored cobalt/cobalt oxide nanoparticles (PCC–CoOx) that exhibit outstanding electrochemical performance for many key aspects of lithium-ion battery electrodes. The host carbon cuboid features an ultra-polar surface reflected by its high hydrophilicity and rich surface defects due to high heteroatom doping (N-/O-doping both higher than 10 atom%) as well as hierarchical pore systems. We loaded the porous carbon cuboid with cobalt/cobalt oxide nanoparticles through an impregnation process followed by calcination treatment. The resulting PCC–CoOx anode exhibits superior rate capability (195 mA h g−1 at 20 A g−1) and excellent cycling stability (580 mA h g−1 after 2000 cycles at 1 A g−1 with only 0.0067% capacity loss per cycle). Impressively, even after an ultra-long cycle life exceeding 10 000 cycles at 5 A g−1, the battery can recover to 1050 mA h g−1 at 0.1 A g−1, perhaps the best performance demonstrated so far for lithium storage in cobalt oxide-based electrodes. This study provides a new perspective to engineer long-life, high-power metal oxide-based electrodes for lithium-ion batteries through controlling the surface chemistry of carbon host materials.

Loading...
Thumbnail Image
Item

Glassy Metal–Organic-Framework-Based Quasi-Solid-State Electrolyte for High-Performance Lithium-Metal Batteries

2021, Jiang, Guangshen, Qu, Changzhen, Xu, Fei, Zhang, En, Lu, Qiongqiong, Cai, Xiaoru, Hausdorf, Steffen, Wang, Hongqiang, Kaskel, Stefan

Enhancing ionic conductivity of quasi-solid-state electrolytes (QSSEs) is one of the top priorities, while conventional metal–organic frameworks (MOFs) severely impede ion migration due to their abundant grain boundaries. Herein, ZIF-4 glass, a subset of MOFs, is reported as QSSEs (LGZ) for lithium-metal batteries. With lean Li content (0.12 wt%) and solvent amount (19.4 wt%), LGZ can achieve a remarkable ion conductivity of 1.61 × 10−4 S cm−1 at 30 °C, higher than those of crystalline ZIF-4-based QSSEs (LCZ, 8.21 × 10−5 S cm−1) and the reported QSSEs containing high Li contents (0.32–5.4 wt%) and huge plasticizer (30–70 wt%). Even at −56.6 °C, LGZ can still deliver a conductivity of 5.96 × 10−6 S cm−1 (vs 4.51 × 10−7 S cm−1 for LCZ). Owing to the grain boundary-free and isotropic properties of glassy ZIF-4, the facilitated ion conduction enables a homogeneous ion flux, suppressing Li dendrites. When paired with LiFePO4 cathode, LGZ cell demonstrates a prominent cycling capacity of 101 mAh g−1 for 500 cycles at 1 C with the near-utility retention, outperforming LCZ (30.7 mAh g−1) and the explored MOF-/covalent–organic frameworks (COF)-based QSSEs. Hence, MOF glasses will be a potential platform for practical quasi-solid-state batteries in the future. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH