Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Role of CO2, climate and land use in regulating the seasonal amplitude increase of carbon fluxes in terrestrial ecosystems: A multimodel analysis

2016, Zhao, Fang, Zeng, Ning, Asrar, Ghassem, Friedlingstein, Pierre, Ito, Akihiko, Jain, Atul, Kalnay, Eugenia, Kato, Etsushi, Koven, Charles D., Poulter, Ben, Rafique, Rashid, Sitch, Stephen, Shu, Shijie, Stocker, Beni, Viovy, Nicolas, Wiltshire, Andy, Zaehle, Sonke

We examined the net terrestrial carbon flux to the atmosphere (FTA) simulated by nine models from the TRENDY dynamic global vegetation model project for its seasonal cycle and amplitude trend during 1961–2012. While some models exhibit similar phase and amplitude compared to atmospheric inversions, with spring drawdown and autumn rebound, others tend to rebound early in summer. The model ensemble mean underestimates the magnitude of the seasonal cycle by 40 % compared to atmospheric inversions. Global FTA amplitude increase (19 ± 8 %) and its decadal variability from the model ensemble are generally consistent with constraints from surface atmosphere observations. However, models disagree on attribution of this long-term amplitude increase, with factorial experiments attributing 83 ± 56 %, −3 ± 74 and 20 ± 30 % to rising CO2, climate change and land use/cover change, respectively. Seven out of the nine models suggest that CO2 fertilization is the strongest control – with the notable exception of VEGAS, which attributes approximately equally to the three factors. Generally, all models display an enhanced seasonality over the boreal region in response to high-latitude warming, but a negative climate contribution from part of the Northern Hemisphere temperate region, and the net result is a divergence over climate change effect. Six of the nine models show that land use/cover change amplifies the seasonal cycle of global FTA: some are due to forest regrowth, while others are caused by crop expansion or agricultural intensification, as revealed by their divergent spatial patterns. We also discovered a moderate cross-model correlation between FTA amplitude increase and increase in land carbon sink (R2 =  0.61). Our results suggest that models can show similar results in some benchmarks with different underlying mechanisms; therefore, the spatial traits of CO2 fertilization, climate change and land use/cover changes are crucial in determining the right mechanisms in seasonal carbon cycle change as well as mean sink change.

Loading...
Thumbnail Image
Item

Implications of climate change mitigation strategies on international bioenergy trade

2020, Daioglou, Vassilis, Muratori, Matteo, Lamers, Patrick, Fujimori, Shinichiro, Kitous, Alban, Köberle, Alexandre C., Bauer, Nico, Junginger, Martin, Kato, Etsushi, Leblanc, Florian, Mima, Silvana, Wise, Marshal, van Vuuren, Detlef P.

Most climate change mitigation scenarios rely on increased use of bioenergy to decarbonize the energy system. Here we use results from the 33rd Energy Modeling Forum study (EMF-33) to investigate projected international bioenergy trade for different integrated assessment models across several climate change mitigation scenarios. Results show that in scenarios with no climate policy, international bioenergy trade is likely to increase over time, and becomes even more important when climate targets are set. More stringent climate targets, however, do not necessarily imply greater bioenergy trade compared to weaker targets, as final energy demand may be reduced. However, the scaling up of bioenergy trade happens sooner and at a faster rate with increasing climate target stringency. Across models, for a scenario likely to achieve a 2 °C target, 10–45 EJ/year out of a total global bioenergy consumption of 72–214 EJ/year are expected to be traded across nine world regions by 2050. While this projection is greater than the present trade volumes of coal or natural gas, it remains below the present trade of crude oil. This growth in bioenergy trade largely replaces the trade in fossil fuels (especially oil) which is projected to decrease significantly over the twenty-first century. As climate change mitigation scenarios often show diversified energy systems, in which numerous world regions can act as bioenergy suppliers, the projections do not necessarily lead to energy security concerns. Nonetheless, rapid growth in the trade of bioenergy is projected in strict climate mitigation scenarios, raising questions about infrastructure, logistics, financing options, and global standards for bioenergy production and trade. © 2020, The Author(s).

Loading...
Thumbnail Image
Item

Bioenergy technologies in long-run climate change mitigation: results from the EMF-33 study

2020, Daioglou, Vassilis, Rose, Steven K., Bauer, Nico, Kitous, Alban, Muratori, Matteo, Sano, Fuminori, Fujimori, Shinichiro, Gidden, Matthew J., Kato, Etsushi, Keramidas, Kimon, Klein, David, Leblanc, Florian, Tsutsui, Junichi, Wise, Marshal, van Vuuren, Detlef P.

Bioenergy is expected to play an important role in long-run climate change mitigation strategies as highlighted by many integrated assessment model (IAM) scenarios. These scenarios, however, also show a very wide range of results, with uncertainty about bioenergy conversion technology deployment and biomass feedstock supply. To date, the underlying differences in model assumptions and parameters for the range of results have not been conveyed. Here we explore the models and results of the 33rd study of the Stanford Energy Modeling Forum to elucidate and explore bioenergy technology specifications and constraints that underlie projected bioenergy outcomes. We first develop and report consistent bioenergy technology characterizations and modeling details. We evaluate the bioenergy technology specifications through a series of analyses—comparison with the literature, model intercomparison, and an assessment of bioenergy technology projected deployments. We find that bioenergy technology coverage and characterization varies substantially across models, spanning different conversion routes, carbon capture and storage opportunities, and technology deployment constraints. Still, the range of technology specification assumptions is largely in line with bottom-up engineering estimates. We then find that variation in bioenergy deployment across models cannot be understood from technology costs alone. Important additional determinants include biomass feedstock costs, the availability and costs of alternative mitigation options in and across end-uses, the availability of carbon dioxide removal possibilities, the speed with which large scale changes in the makeup of energy conversion facilities and integration can take place, and the relative demand for different energy services. © 2020, The Author(s).