Search Results

Now showing 1 - 2 of 2
  • Item
    Electronic correlations and magnetic interactions in infinite-layer NdNiO2
    (Woodbury, NY : Inst., 2020) Katukuri, Vamshi M.; Bogdanov, Nikolay A.; Weser, Oskar; Van den Brink, Jeroen; Alavi, Ali
    The large antiferromagnetic exchange coupling in the parent high-Tc cuprate superconductors is believed to play a crucial role in pairing the superconducting carriers. The recent observation of superconductivity in hole-doped infinite-layer (IL-) NdNiO2 brings to the fore the relevance of magnetic coupling in high-Tc superconductors, particularly because no magnetic ordering is observed in the undoped IL-NdNiO2, unlike in parent copper oxides. Here, we investigate the electronic structure and the nature of magnetic exchange in IL-NdNiO2 using state-of-the-art many-body quantum chemistry methods. From a systematic comparison of the electronic and magnetic properties with isostructural cuprate IL-CaCuO2, we find that the on-site dynamical correlations are significantly stronger in IL-NdNiO2 compared to the cuprate analog. These dynamical correlations play a critical role in the magnetic exchange resulting in an unexpectedly large antiferromagnetic nearest-neighbor isotropic J of 77 meV between the Ni1+ ions within the ab plane. While we find many similarities in the electronic structure between the nickelate and the cuprate, the role of electronic correlations is profoundly different in the two. We further discuss the implications of our findings in understanding the origin of superconductivity in nickelates. © 2020 authors.
  • Item
    Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3
    (London : Nature Publishing Group, 2016) Yadav, Ravi; Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Nishimoto, Satoshi; van den Brink, Jeroen; Hozoi, Liviu
    Large anisotropic exchange in 5d and 4d oxides and halides open the door to new types of magnetic ground states and excitations, inconceivable a decade ago. A prominent case is the Kitaev spin liquid, host of remarkable properties such as protection of quantum information and the emergence of Majorana fermions. Here we discuss the promise for spin-liquid behavior in the 4d5 honeycomb halide α-RuCl3. From advanced electronic-structure calculations, we find that the Kitaev interaction is ferromagnetic, as in 5d5 iridium honeycomb oxides, and indeed defines the largest superexchange energy scale. A ferromagnetic Kitaev coupling is also supported by a detailed analysis of the field-dependent magnetization. Using exact diagonalization and density-matrix renormalization group techniques for extended Kitaev-Heisenberg spin Hamiltonians, we find indications for a transition from zigzag order to a gapped spin liquid when applying magnetic field. Our results offer a unified picture on recent magnetic and spectroscopic measurements on this material and open new perspectives on the prospect of realizing quantum spin liquids in d5 halides and oxides in general.