Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Environmental Effects over the First 2½ Rotation Periods of a Fertilised Poplar Short Rotation Coppice

2017-12-7, Kern, Jürgen, Germer, Sonja, Ammon, Christian, Balasus, Antje, Bischoff, Wolf-Anno, Schwarz, Andreas, Forstreuter, Manfred, Kaupenjohann, Martin

A short rotation coppice (SRC) with poplar was established in a randomised fertilisation experiment on sandy loam soil in Potsdam (Northeast Germany). The main objective of this study was to assess if negative environmental effects as nitrogen leaching and greenhouse gas emissions are enhanced by mineral nitrogen (N) fertiliser applied to poplar at rates of 0, 50 and 75 kg N ha−1 year−1 and how these effects are influenced by tree age with increasing number of rotation periods and cycles of organic matter decomposition and tree growth after each harvesting event. Between 2008 and 2012, the leaching of nitrate (NO3 −) was monitored with self-integrating accumulators over 6-month periods and the emissions of the greenhouse gases (GHG) nitrous oxide (N2O) and carbon dioxide (CO2) were determined in closed gas chambers. During the first 4 years of the poplar SRC, most nitrogen was lost through NO3 − leaching from the main root zone; however, there was no significant relationship to the rate of N fertilisation. On average, 5.8 kg N ha−1 year−1 (13.0 kg CO2equ) was leached from the root zone. Nitrogen leaching rates decreased in the course of the 4-year study parallel to an increase of the fine root biomass and the degree of mycorrhization. In contrast to N leaching, the loss of nitrogen by N2O emissions from the soil was very low with an average of 0.61 kg N ha−1 year−1 (182 kg CO2equ) and were also not affected by N fertilisation over the whole study period. Real CO2 emissions from the poplar soil were two orders of magnitude higher ranging between 15,122 and 19,091 kg CO2 ha−1 year−1 and followed the rotation period with enhanced emission rates in the years of harvest. As key-factors for NO3 − leaching and N2O emissions, the time after planting and after harvest and the rotation period have been identified by a mixed effects model. © 2017, The Author(s).

Loading...
Thumbnail Image
Item

Contrasting effects of biochar on N2O emission and N uptake at different N fertilizer levels on a temperate sandy loam

2016, Sun, Zhencai, Sänger, Anja, Rebensburg, Philip, Lentzsch, Peter, Wirth, Stephan, Kaupenjohann, Martin, Meyer-Aurich, Andreas

Biochar has been frequently suggested as an amendment to improve soil quality and mitigate climate change. To investigate the optimal management of nitrogen (N) fertilization, we examined the combined effect of biochar and N fertilizer on plant N uptake and N2O emissions in a cereal rotation system in a randomized two-factorial field experiment on a sandy loam soil in Brandenburg, Germany. The biochar treatment received 10 Mg ha− 1 wood-derived biochar in September 2012. Four levels of N fertilizer, corresponding to 0, 50%, 100%, 130% of the recommended fertilizer level, were applied in winter wheat (Triticum aestivum L.)) and winter rye (Secale cereal L.) in 2013 and 2014 followed by the catch crop oil radish (Raphanus sativus L. var. oleiformis). Biomass and N uptake of winter wheat and winter rye were significantly affected by the level of N fertilizer but not by biochar. For N uptake of oil radish an interaction effect was observed for biochar and N fertilizer. Without applied fertilizer, 39% higher N uptake was found in the presence of biochar, accompanied by higher soil NH4+ content and elevated cumulative CO2 emissions. At 130% of the recommended fertilizer level, 16% lower N uptake and lower cumulative N2O emissions were found in the biochar-mediated treatment. No significant change in abundance of microbial groups and nosZ gene were observed. Our results highlight that biochar can have a greenhouse gas mitigation effect at high levels of N supply and may stimulate nutrient uptake when no N is supplied.

Loading...
Thumbnail Image
Item

Einfluss der mineralischen Stickstoff-Düngung auf den Biomasseertrag von Pappel und Weide sowie Ermittlung relevanter Umweltwirkungen : Abschlussbericht ; Projektlaufzeit: 01.09.2008 bis 31.12.2012

2013, Kern, Jürgen, Balasus, Antje, Forstreuter, Manfred, Kaupenjohann, Martin

[no abstract available]