Search Results

Now showing 1 - 2 of 2
  • Item
    Anion and ether group influence in protic guanidinium ionic liquids
    (Cambridge : RSC Publ., 2023) Rauber, Daniel; Philippi, Frederik; Becker, Julian; Zapp, Josef; Morgenstern, Bernd; Kuttich, Björn; Kraus, Tobias; Hempelmann, Rolf; Hunt, Patricia; Welton, Tom; Kay, Christopher W. M.
    Ionic liquids are attractive liquid materials for many advanced applications. For targeted design, in-depth knowledge about their structure-property-relations is urgently needed. We prepared a set of novel protic ionic liquids (PILs) with a guanidinium cation with either an ether or alkyl side chain and different anions. While being a promising cation class, the available data is insufficient to guide design. We measured thermal and transport properties, nuclear magnetic resonance (NMR) spectra as well as liquid and crystalline structures supported by ab initio computations and were able to obtain a detailed insight into the influence of the anion and the ether substitution on the physical and spectroscopic properties. For the PILs, hydrogen bonding is the main interaction between cation and anion and the H-bond strength is inversely related to the proton affinity of the constituting acid and correlated to the increase of 1H and 15N chemical shifts. Using anions from acids with lower proton affinity leads to proton localization on the cation as evident from NMR spectra and self-diffusion coefficients. In contrast, proton exchange was evident in ionic liquids with triflate and trifluoroacetate anions. Using imide-type anions and ether side groups decreases glass transitions as well as fragility, and accelerated dynamics significantly. In case of the ether guanidinium ionic liquids, the conformation of the side chain adopts a curled structure as the result of dispersion interactions, while the alkyl chains prefer a linear arrangement.
  • Item
    Pentacene in 1,3,5-Tri(1-naphtyl)benzene: A Novel Standard for Transient EPR Spectroscopy at Room Temperature
    (Wien [u.a.] : Springer, 2021) Schröder, Mirjam; Rauber, Daniel; Matt, Clemens; Kay, Christopher W. M.
    Testing and calibrating an experimental setup with standard samples is an essential aspect of scientific research. Single crystals of pentacene in p-terphenyl are widely used for this purpose in transient electron paramagnetic resonance (EPR) spectroscopy. However, this sample is not without downsides: the crystals need to be grown and the EPR transitions only appear at particular orientations of the crystal with respect to the external magnetic field. An alternative host for pentacene is the glass-forming 1,3,5-tri(1-naphtyl)benzene (TNB). Due to the high glass transition point of TNB, an amorphous glass containing randomly oriented pentacene molecules is obtained at room temperature. Here we demonstrate that pentacene dissolved in TNB gives a typical “powder-like” transient EPR spectrum of the triplet state following pulsed laser excitation. From the two-dimensional data set, it is straightforward to obtain the zero-field splitting parameters and relative populations by spectral simulation as well as the B1 field in the microwave resonator. Due to the simplicity of preparation, handling and stability, this system is ideal for adjusting the laser beam with respect to the microwave resonator and for introducing students to transient EPR spectroscopy. © 2021, The Author(s).