Search Results

Now showing 1 - 2 of 2
  • Item
    Miniature switchable millimeter-wave BiCMOS low-noise amplifier at 120/140 GHz using an HBT switch
    (Basel : MDPI, 2019) Heredia, Julio; Ribó, Miquel; Pradell, Lluís; Wipf, Selin Tolunay; Göritz, Alexander; Wietstruck, Matthias; Wipf, Christian; Kaynak, Mehmet
    A 120-140 GHz frequency-switchable, very compact low-noise amplifier (LNA) fabricated in a 0.13 µm SiGe:C BiCMOS technology is proposed. A single radio-frequency (RF) switch composed of three parallel hetero junction bipolar transistors (HBTs) in a common-collector configuration and a multimodal three-line microstrip structure in the input matching network are used to obtain a LNA chip of miniaturized size. A systematic design procedure is applied to obtain a perfectly balanced gain and noise figure in both frequency states (120 GHz and 140 GHz). The measured gain and noise figure are 14.2/14.2 dB and 8.2/8.2 dB at 120/140 GHz respectively, in very good agreement with circuit/electromagnetic co-simulations. The LNA chip and core areas are 0.197 mm2 and 0.091 mm2, respectively, which supposes an area reduction of 23.4% and 15.2% compared to other LNAs reported in this frequency band. The experimental results validate the design procedure and its analysis. © 2019 by the authors.
  • Item
    Advanced numerical investigation of the heat flux in an array of microbolometers
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Stocchi, Matteo; Mencarelli, Davide; Pierantoni, Luca; Göritz, Alexander; Kaynak, Canan Baristiran; Wietstruck, Matthias; Kaynak, Mehmet
    The investigation of the thermal properties of an array of microbolometers has been carried out by mean of two independent numerical analysis, respectively the Direct-Simulation Monte Carlo (DSMC) and the classic diffusive approach of the Fourier's equation. In particular, the thermal dissipation of a hot membrane placed in a low-pressure cavity has been studied for different values of the temperature of the hot body and for different values of the pressure of the environment. The results for the heat flux derived from the two approaches have then been compared and discussed.