Search Results

Now showing 1 - 2 of 2
  • Item
    Hydrothermal Carbonization and Pyrolysis of Sewage Sludge: Effects on Lolium perenne Germination and Growth
    (Basel : MDPI, 2019) Paneque, Marina; Knicker, Heike; Kern, Jürgen; De la Rosa, José María
    The pyrolysis and hydrothermal carbonization (HTC) of sewage sludge (SS) resulted in products free of pathogens, with the potential for being used as soil amendment. With this work, we evaluated the impact of dry pyrolysis-treated (600 °C, 1 h) and HTC-treated (200 °C, 260 °C; 0.5 h, 3 h) SS on the germination, survival, and growth of Lolium perenne during an 80 day greenhouse experiment. Therefore, the hydrochars and pyrochars were amended to a Calcic Cambisol at doses of 5 and 25 t ha−1. The addition of sludge pyrochars to the Cambisol did not affect Lolium germination, survival rates or plant yields. However, the use 25 t ha−1 of wood biochar reduced germination and survival rates, which may be related to the low N availability of this sample. In comparison to the control, higher or equal plant biomass was produced in the hydrochar-amended pots, even though some hydrochars decreased plant germination and survival rates. Among all the evaluated char properties, only the organic and inorganic N contents of the chars, along with their organic C values, positively correlated with total and shoot biomass production. Our work demonstrates the N fertilization potential of the hydrochar produced at low temperature, whereas the hydrochar produced at 260 °C and the pyrochars were less efficient with respect to plant yields.
  • Item
    Environmental Effects over the First 2½ Rotation Periods of a Fertilised Poplar Short Rotation Coppice
    (New York, NY : Springer, 2017-12-7) Kern, Jürgen; Germer, Sonja; Ammon, Christian; Balasus, Antje; Bischoff, Wolf-Anno; Schwarz, Andreas; Forstreuter, Manfred; Kaupenjohann, Martin
    A short rotation coppice (SRC) with poplar was established in a randomised fertilisation experiment on sandy loam soil in Potsdam (Northeast Germany). The main objective of this study was to assess if negative environmental effects as nitrogen leaching and greenhouse gas emissions are enhanced by mineral nitrogen (N) fertiliser applied to poplar at rates of 0, 50 and 75 kg N ha−1 year−1 and how these effects are influenced by tree age with increasing number of rotation periods and cycles of organic matter decomposition and tree growth after each harvesting event. Between 2008 and 2012, the leaching of nitrate (NO3 −) was monitored with self-integrating accumulators over 6-month periods and the emissions of the greenhouse gases (GHG) nitrous oxide (N2O) and carbon dioxide (CO2) were determined in closed gas chambers. During the first 4 years of the poplar SRC, most nitrogen was lost through NO3 − leaching from the main root zone; however, there was no significant relationship to the rate of N fertilisation. On average, 5.8 kg N ha−1 year−1 (13.0 kg CO2equ) was leached from the root zone. Nitrogen leaching rates decreased in the course of the 4-year study parallel to an increase of the fine root biomass and the degree of mycorrhization. In contrast to N leaching, the loss of nitrogen by N2O emissions from the soil was very low with an average of 0.61 kg N ha−1 year−1 (182 kg CO2equ) and were also not affected by N fertilisation over the whole study period. Real CO2 emissions from the poplar soil were two orders of magnitude higher ranging between 15,122 and 19,091 kg CO2 ha−1 year−1 and followed the rotation period with enhanced emission rates in the years of harvest. As key-factors for NO3 − leaching and N2O emissions, the time after planting and after harvest and the rotation period have been identified by a mixed effects model. © 2017, The Author(s).