Search Results

Now showing 1 - 2 of 2
  • Item
    Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change
    (Amsterdam [u.a.] : Elsevier, 2017) Fronzek, Stefan; Pirttioja, Nina; Carter, Timothy R.; Bindi, Marco; Hoffmann, Holger; Palosuo, Taru; Ruiz-Ramos, Margarita; Tao, Fulu; Trnka, Miroslav; Acutis, Marco; Asseng, Senthold; Baranowski, Piotr; Basso, Bruno; Bodin, Per; Buis, Samuel; Cammarano, Davide; Deligios, Paola; Destain, Marie-France; Dumont, Benjamin; Ewert, Frank; Ferrise, Roberto; François, Louis; Gaiser, Thomas; Hlavinka, Petr; Jacquemin, Ingrid; Kersebaum, Kurt Christian; Kollas, Chris; Krzyszczak, Jaromir; Lorite, Ignacio J.; Minet, Julien; Minguez, M. Ines; Montesino, Manuel; Moriondo, Marco; Müller, Christoph; Nendel, Claas; Öztürk, Isik; Perego, Alessia; Rodríguez, Alfredo; Ruane, Alex C.; Ruget, Françoise; Sanna, Mattia; Semenov, Mikhail A.; Slawinski, Cezary; Stratonovitch, Pierre; Supit, Iwan; Waha, Katharina; Wang, Enli; Wu, Lianhai; Zhao, Zhigan; Rötter, Reimund P.
    Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (−2 to +9°C) and precipitation (−50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index. Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.
  • Item
    Is dry soil planting an adaptation strategy for maize cultivation in semi-arid Tanzania?
    (Heidelberg : Springer, 2017) Lana, Marcos A.; Vasconcelos, Ana Carolina F.; Gornott, Christoph; Schaffert, Angela; Bonatti, Michelle; Volk, Johanna; Graef, Frieder; Kersebaum, Kurt Christian; Sieber, Stefan
    Agriculture has the greatest potential to lift the African continent out of poverty and alleviate hunger. Among the countries in sub-Saharan Africa, Tanzania has an abundance of natural resources and major agricultural potential. However, one of the most important constraints facing Tanzania’s agricultural sector is the dependence on unreliable and irregular weather, including rainfall. A strategy to cope with climate uncertainty in semi-arid regions is to proceed with the sowing of the crop before the onset of the rainy season. The advantage is that when the rains start, seeds are already in the soil and can begin immediately the process of germination. The objective of this paper was to assess the effectiveness of dry-soil planting for maize as an adaptation strategy in the context of a changing climate in Dodoma, a semi-arid region in Tanzania. For this assessment, the DSSAT crop model was used in combination with climate scenarios based on representative concentration pathways. A probability of crop failure of more than 80% can be expected when sowing occurs during the planting window (of 21 days) starting on 1st November. The next planting window we assessed, starting on 23rd November (which was still before the onset of rain), presented significantly lower probabilities of crop failure, indicating that sowing before the onset of the rainy season is a suitable adaptation strategy. Results also indicated that, despite not reaching the highest maize grain yields, fields prepared for dry-soil planting still produced adequate yields. The cultivation of several fields using the dry planting method is a strategy farmers can use to cope with low rainfall conditions, since it increases the chances of harvesting at least some of the cultivated fields. We conclude that dry-soil planting is a feasible and valid technique, even in scenarios of climate change, in order to provide acceptable maize yields in semi-arid Tanzania.